Clone of mesa.
您最多选择25个主题 主题必须以字母或数字开头,可以包含连字符 (-),并且长度不得超过35个字符

register_allocate.c 30KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981
  1. /*
  2. * Copyright © 2010 Intel Corporation
  3. *
  4. * Permission is hereby granted, free of charge, to any person obtaining a
  5. * copy of this software and associated documentation files (the "Software"),
  6. * to deal in the Software without restriction, including without limitation
  7. * the rights to use, copy, modify, merge, publish, distribute, sublicense,
  8. * and/or sell copies of the Software, and to permit persons to whom the
  9. * Software is furnished to do so, subject to the following conditions:
  10. *
  11. * The above copyright notice and this permission notice (including the next
  12. * paragraph) shall be included in all copies or substantial portions of the
  13. * Software.
  14. *
  15. * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  16. * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  17. * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
  18. * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
  19. * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
  20. * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
  21. * IN THE SOFTWARE.
  22. *
  23. * Authors:
  24. * Eric Anholt <eric@anholt.net>
  25. *
  26. */
  27. /** @file register_allocate.c
  28. *
  29. * Graph-coloring register allocator.
  30. *
  31. * The basic idea of graph coloring is to make a node in a graph for
  32. * every thing that needs a register (color) number assigned, and make
  33. * edges in the graph between nodes that interfere (can't be allocated
  34. * to the same register at the same time).
  35. *
  36. * During the "simplify" process, any any node with fewer edges than
  37. * there are registers means that that edge can get assigned a
  38. * register regardless of what its neighbors choose, so that node is
  39. * pushed on a stack and removed (with its edges) from the graph.
  40. * That likely causes other nodes to become trivially colorable as well.
  41. *
  42. * Then during the "select" process, nodes are popped off of that
  43. * stack, their edges restored, and assigned a color different from
  44. * their neighbors. Because they were pushed on the stack only when
  45. * they were trivially colorable, any color chosen won't interfere
  46. * with the registers to be popped later.
  47. *
  48. * The downside to most graph coloring is that real hardware often has
  49. * limitations, like registers that need to be allocated to a node in
  50. * pairs, or aligned on some boundary. This implementation follows
  51. * the paper "Retargetable Graph-Coloring Register Allocation for
  52. * Irregular Architectures" by Johan Runeson and Sven-Olof Nyström.
  53. *
  54. * In this system, there are register classes each containing various
  55. * registers, and registers may interfere with other registers. For
  56. * example, one might have a class of base registers, and a class of
  57. * aligned register pairs that would each interfere with their pair of
  58. * the base registers. Each node has a register class it needs to be
  59. * assigned to. Define p(B) to be the size of register class B, and
  60. * q(B,C) to be the number of registers in B that the worst choice
  61. * register in C could conflict with. Then, this system replaces the
  62. * basic graph coloring test of "fewer edges from this node than there
  63. * are registers" with "For this node of class B, the sum of q(B,C)
  64. * for each neighbor node of class C is less than pB".
  65. *
  66. * A nice feature of the pq test is that q(B,C) can be computed once
  67. * up front and stored in a 2-dimensional array, so that the cost of
  68. * coloring a node is constant with the number of registers. We do
  69. * this during ra_set_finalize().
  70. */
  71. #include <stdbool.h>
  72. #include "ralloc.h"
  73. #include "main/imports.h"
  74. #include "main/macros.h"
  75. #include "util/bitset.h"
  76. #include "register_allocate.h"
  77. #define NO_REG ~0U
  78. struct ra_reg {
  79. BITSET_WORD *conflicts;
  80. unsigned int *conflict_list;
  81. unsigned int conflict_list_size;
  82. unsigned int num_conflicts;
  83. };
  84. struct ra_regs {
  85. struct ra_reg *regs;
  86. unsigned int count;
  87. struct ra_class **classes;
  88. unsigned int class_count;
  89. bool round_robin;
  90. };
  91. struct ra_class {
  92. /**
  93. * Bitset indicating which registers belong to this class.
  94. *
  95. * (If bit N is set, then register N belongs to this class.)
  96. */
  97. BITSET_WORD *regs;
  98. /**
  99. * p(B) in Runeson/Nyström paper.
  100. *
  101. * This is "how many regs are in the set."
  102. */
  103. unsigned int p;
  104. /**
  105. * q(B,C) (indexed by C, B is this register class) in
  106. * Runeson/Nyström paper. This is "how many registers of B could
  107. * the worst choice register from C conflict with".
  108. */
  109. unsigned int *q;
  110. };
  111. struct ra_node {
  112. /** @{
  113. *
  114. * List of which nodes this node interferes with. This should be
  115. * symmetric with the other node.
  116. */
  117. BITSET_WORD *adjacency;
  118. unsigned int *adjacency_list;
  119. unsigned int adjacency_list_size;
  120. unsigned int adjacency_count;
  121. /** @} */
  122. unsigned int class;
  123. /* Client-assigned register, if assigned, or NO_REG. */
  124. unsigned int forced_reg;
  125. /* Register, if assigned, or NO_REG. */
  126. unsigned int reg;
  127. /**
  128. * The q total, as defined in the Runeson/Nyström paper, for all the
  129. * interfering nodes not in the stack.
  130. */
  131. unsigned int q_total;
  132. /* For an implementation that needs register spilling, this is the
  133. * approximate cost of spilling this node.
  134. */
  135. float spill_cost;
  136. /* Temporary data for the algorithm to scratch around in */
  137. struct {
  138. /**
  139. * Temporary version of q_total which we decrement as things are placed
  140. * into the stack.
  141. */
  142. unsigned int q_total;
  143. } tmp;
  144. };
  145. struct ra_graph {
  146. struct ra_regs *regs;
  147. /**
  148. * the variables that need register allocation.
  149. */
  150. struct ra_node *nodes;
  151. unsigned int count; /**< count of nodes. */
  152. unsigned int alloc; /**< count of nodes allocated. */
  153. unsigned int (*select_reg_callback)(struct ra_graph *g, BITSET_WORD *regs,
  154. void *data);
  155. void *select_reg_callback_data;
  156. /* Temporary data for the algorithm to scratch around in */
  157. struct {
  158. unsigned int *stack;
  159. unsigned int stack_count;
  160. /** Bit-set indicating, for each register, if it's in the stack */
  161. BITSET_WORD *in_stack;
  162. /** Bit-set indicating, for each register, if it pre-assigned */
  163. BITSET_WORD *reg_assigned;
  164. /** Bit-set indicating, for each register, the value of the pq test */
  165. BITSET_WORD *pq_test;
  166. /** For each BITSET_WORD, the minimum q value or ~0 if unknown */
  167. unsigned int *min_q_total;
  168. /*
  169. * * For each BITSET_WORD, the node with the minimum q_total if
  170. * min_q_total[i] != ~0.
  171. */
  172. unsigned int *min_q_node;
  173. /**
  174. * Tracks the start of the set of optimistically-colored registers in the
  175. * stack.
  176. */
  177. unsigned int stack_optimistic_start;
  178. } tmp;
  179. };
  180. /**
  181. * Creates a set of registers for the allocator.
  182. *
  183. * mem_ctx is a ralloc context for the allocator. The reg set may be freed
  184. * using ralloc_free().
  185. */
  186. struct ra_regs *
  187. ra_alloc_reg_set(void *mem_ctx, unsigned int count, bool need_conflict_lists)
  188. {
  189. unsigned int i;
  190. struct ra_regs *regs;
  191. regs = rzalloc(mem_ctx, struct ra_regs);
  192. regs->count = count;
  193. regs->regs = rzalloc_array(regs, struct ra_reg, count);
  194. for (i = 0; i < count; i++) {
  195. regs->regs[i].conflicts = rzalloc_array(regs->regs, BITSET_WORD,
  196. BITSET_WORDS(count));
  197. BITSET_SET(regs->regs[i].conflicts, i);
  198. if (need_conflict_lists) {
  199. regs->regs[i].conflict_list = ralloc_array(regs->regs,
  200. unsigned int, 4);
  201. regs->regs[i].conflict_list_size = 4;
  202. regs->regs[i].conflict_list[0] = i;
  203. } else {
  204. regs->regs[i].conflict_list = NULL;
  205. regs->regs[i].conflict_list_size = 0;
  206. }
  207. regs->regs[i].num_conflicts = 1;
  208. }
  209. return regs;
  210. }
  211. /**
  212. * The register allocator by default prefers to allocate low register numbers,
  213. * since it was written for hardware (gen4/5 Intel) that is limited in its
  214. * multithreadedness by the number of registers used in a given shader.
  215. *
  216. * However, for hardware without that restriction, densely packed register
  217. * allocation can put serious constraints on instruction scheduling. This
  218. * function tells the allocator to rotate around the registers if possible as
  219. * it allocates the nodes.
  220. */
  221. void
  222. ra_set_allocate_round_robin(struct ra_regs *regs)
  223. {
  224. regs->round_robin = true;
  225. }
  226. static void
  227. ra_add_conflict_list(struct ra_regs *regs, unsigned int r1, unsigned int r2)
  228. {
  229. struct ra_reg *reg1 = &regs->regs[r1];
  230. if (reg1->conflict_list) {
  231. if (reg1->conflict_list_size == reg1->num_conflicts) {
  232. reg1->conflict_list_size *= 2;
  233. reg1->conflict_list = reralloc(regs->regs, reg1->conflict_list,
  234. unsigned int, reg1->conflict_list_size);
  235. }
  236. reg1->conflict_list[reg1->num_conflicts++] = r2;
  237. }
  238. BITSET_SET(reg1->conflicts, r2);
  239. }
  240. void
  241. ra_add_reg_conflict(struct ra_regs *regs, unsigned int r1, unsigned int r2)
  242. {
  243. if (!BITSET_TEST(regs->regs[r1].conflicts, r2)) {
  244. ra_add_conflict_list(regs, r1, r2);
  245. ra_add_conflict_list(regs, r2, r1);
  246. }
  247. }
  248. /**
  249. * Adds a conflict between base_reg and reg, and also between reg and
  250. * anything that base_reg conflicts with.
  251. *
  252. * This can simplify code for setting up multiple register classes
  253. * which are aggregates of some base hardware registers, compared to
  254. * explicitly using ra_add_reg_conflict.
  255. */
  256. void
  257. ra_add_transitive_reg_conflict(struct ra_regs *regs,
  258. unsigned int base_reg, unsigned int reg)
  259. {
  260. unsigned int i;
  261. ra_add_reg_conflict(regs, reg, base_reg);
  262. for (i = 0; i < regs->regs[base_reg].num_conflicts; i++) {
  263. ra_add_reg_conflict(regs, reg, regs->regs[base_reg].conflict_list[i]);
  264. }
  265. }
  266. /**
  267. * Makes every conflict on the given register transitive. In other words,
  268. * every register that conflicts with r will now conflict with every other
  269. * register conflicting with r.
  270. *
  271. * This can simplify code for setting up multiple register classes
  272. * which are aggregates of some base hardware registers, compared to
  273. * explicitly using ra_add_reg_conflict.
  274. */
  275. void
  276. ra_make_reg_conflicts_transitive(struct ra_regs *regs, unsigned int r)
  277. {
  278. struct ra_reg *reg = &regs->regs[r];
  279. BITSET_WORD tmp;
  280. int c;
  281. BITSET_FOREACH_SET(c, tmp, reg->conflicts, regs->count) {
  282. struct ra_reg *other = &regs->regs[c];
  283. unsigned i;
  284. for (i = 0; i < BITSET_WORDS(regs->count); i++)
  285. other->conflicts[i] |= reg->conflicts[i];
  286. }
  287. }
  288. unsigned int
  289. ra_alloc_reg_class(struct ra_regs *regs)
  290. {
  291. struct ra_class *class;
  292. regs->classes = reralloc(regs->regs, regs->classes, struct ra_class *,
  293. regs->class_count + 1);
  294. class = rzalloc(regs, struct ra_class);
  295. regs->classes[regs->class_count] = class;
  296. class->regs = rzalloc_array(class, BITSET_WORD, BITSET_WORDS(regs->count));
  297. return regs->class_count++;
  298. }
  299. void
  300. ra_class_add_reg(struct ra_regs *regs, unsigned int c, unsigned int r)
  301. {
  302. struct ra_class *class = regs->classes[c];
  303. BITSET_SET(class->regs, r);
  304. class->p++;
  305. }
  306. /**
  307. * Returns true if the register belongs to the given class.
  308. */
  309. static bool
  310. reg_belongs_to_class(unsigned int r, struct ra_class *c)
  311. {
  312. return BITSET_TEST(c->regs, r);
  313. }
  314. /**
  315. * Must be called after all conflicts and register classes have been
  316. * set up and before the register set is used for allocation.
  317. * To avoid costly q value computation, use the q_values paramater
  318. * to pass precomputed q values to this function.
  319. */
  320. void
  321. ra_set_finalize(struct ra_regs *regs, unsigned int **q_values)
  322. {
  323. unsigned int b, c;
  324. for (b = 0; b < regs->class_count; b++) {
  325. regs->classes[b]->q = ralloc_array(regs, unsigned int, regs->class_count);
  326. }
  327. if (q_values) {
  328. for (b = 0; b < regs->class_count; b++) {
  329. for (c = 0; c < regs->class_count; c++) {
  330. regs->classes[b]->q[c] = q_values[b][c];
  331. }
  332. }
  333. } else {
  334. /* Compute, for each class B and C, how many regs of B an
  335. * allocation to C could conflict with.
  336. */
  337. for (b = 0; b < regs->class_count; b++) {
  338. for (c = 0; c < regs->class_count; c++) {
  339. unsigned int rc;
  340. int max_conflicts = 0;
  341. for (rc = 0; rc < regs->count; rc++) {
  342. int conflicts = 0;
  343. unsigned int i;
  344. if (!reg_belongs_to_class(rc, regs->classes[c]))
  345. continue;
  346. for (i = 0; i < regs->regs[rc].num_conflicts; i++) {
  347. unsigned int rb = regs->regs[rc].conflict_list[i];
  348. if (reg_belongs_to_class(rb, regs->classes[b]))
  349. conflicts++;
  350. }
  351. max_conflicts = MAX2(max_conflicts, conflicts);
  352. }
  353. regs->classes[b]->q[c] = max_conflicts;
  354. }
  355. }
  356. }
  357. for (b = 0; b < regs->count; b++) {
  358. ralloc_free(regs->regs[b].conflict_list);
  359. regs->regs[b].conflict_list = NULL;
  360. }
  361. }
  362. static void
  363. ra_add_node_adjacency(struct ra_graph *g, unsigned int n1, unsigned int n2)
  364. {
  365. BITSET_SET(g->nodes[n1].adjacency, n2);
  366. assert(n1 != n2);
  367. int n1_class = g->nodes[n1].class;
  368. int n2_class = g->nodes[n2].class;
  369. g->nodes[n1].q_total += g->regs->classes[n1_class]->q[n2_class];
  370. if (g->nodes[n1].adjacency_count >=
  371. g->nodes[n1].adjacency_list_size) {
  372. g->nodes[n1].adjacency_list_size *= 2;
  373. g->nodes[n1].adjacency_list = reralloc(g, g->nodes[n1].adjacency_list,
  374. unsigned int,
  375. g->nodes[n1].adjacency_list_size);
  376. }
  377. g->nodes[n1].adjacency_list[g->nodes[n1].adjacency_count] = n2;
  378. g->nodes[n1].adjacency_count++;
  379. }
  380. static void
  381. ra_node_remove_adjacency(struct ra_graph *g, unsigned int n1, unsigned int n2)
  382. {
  383. BITSET_CLEAR(g->nodes[n1].adjacency, n2);
  384. assert(n1 != n2);
  385. int n1_class = g->nodes[n1].class;
  386. int n2_class = g->nodes[n2].class;
  387. g->nodes[n1].q_total -= g->regs->classes[n1_class]->q[n2_class];
  388. unsigned int i;
  389. for (i = 0; i < g->nodes[n1].adjacency_count; i++) {
  390. if (g->nodes[n1].adjacency_list[i] == n2) {
  391. memmove(&g->nodes[n1].adjacency_list[i],
  392. &g->nodes[n1].adjacency_list[i + 1],
  393. (g->nodes[n1].adjacency_count - i - 1) *
  394. sizeof(g->nodes[n1].adjacency_list[0]));
  395. break;
  396. }
  397. }
  398. assert(i < g->nodes[n1].adjacency_count);
  399. g->nodes[n1].adjacency_count--;
  400. }
  401. static void
  402. ra_realloc_interference_graph(struct ra_graph *g, unsigned int alloc)
  403. {
  404. if (alloc <= g->alloc)
  405. return;
  406. /* If we always have a whole number of BITSET_WORDs, it makes it much
  407. * easier to memset the top of the growing bitsets.
  408. */
  409. assert(g->alloc % BITSET_WORDBITS == 0);
  410. alloc = ALIGN(alloc, BITSET_WORDBITS);
  411. g->nodes = reralloc(g, g->nodes, struct ra_node, alloc);
  412. unsigned g_bitset_count = BITSET_WORDS(g->alloc);
  413. unsigned bitset_count = BITSET_WORDS(alloc);
  414. /* For nodes already in the graph, we just have to grow the adjacency set */
  415. for (unsigned i = 0; i < g->alloc; i++) {
  416. assert(g->nodes[i].adjacency != NULL);
  417. g->nodes[i].adjacency = rerzalloc(g, g->nodes[i].adjacency, BITSET_WORD,
  418. g_bitset_count, bitset_count);
  419. }
  420. /* For new nodes, we have to fully initialize them */
  421. for (unsigned i = g->alloc; i < alloc; i++) {
  422. memset(&g->nodes[i], 0, sizeof(g->nodes[i]));
  423. g->nodes[i].adjacency = rzalloc_array(g, BITSET_WORD, bitset_count);
  424. g->nodes[i].adjacency_list_size = 4;
  425. g->nodes[i].adjacency_list =
  426. ralloc_array(g, unsigned int, g->nodes[i].adjacency_list_size);
  427. g->nodes[i].adjacency_count = 0;
  428. g->nodes[i].q_total = 0;
  429. g->nodes[i].forced_reg = NO_REG;
  430. g->nodes[i].reg = NO_REG;
  431. }
  432. /* These are scratch values and don't need to be zeroed. We'll clear them
  433. * as part of ra_select() setup.
  434. */
  435. g->tmp.stack = reralloc(g, g->tmp.stack, unsigned int, alloc);
  436. g->tmp.in_stack = reralloc(g, g->tmp.in_stack, BITSET_WORD, bitset_count);
  437. g->tmp.reg_assigned = reralloc(g, g->tmp.reg_assigned, BITSET_WORD,
  438. bitset_count);
  439. g->tmp.pq_test = reralloc(g, g->tmp.pq_test, BITSET_WORD, bitset_count);
  440. g->tmp.min_q_total = reralloc(g, g->tmp.min_q_total, unsigned int,
  441. bitset_count);
  442. g->tmp.min_q_node = reralloc(g, g->tmp.min_q_node, unsigned int,
  443. bitset_count);
  444. g->alloc = alloc;
  445. }
  446. struct ra_graph *
  447. ra_alloc_interference_graph(struct ra_regs *regs, unsigned int count)
  448. {
  449. struct ra_graph *g;
  450. g = rzalloc(NULL, struct ra_graph);
  451. g->regs = regs;
  452. g->count = count;
  453. ra_realloc_interference_graph(g, count);
  454. return g;
  455. }
  456. void
  457. ra_resize_interference_graph(struct ra_graph *g, unsigned int count)
  458. {
  459. g->count = count;
  460. if (count > g->alloc)
  461. ra_realloc_interference_graph(g, g->alloc * 2);
  462. }
  463. void ra_set_select_reg_callback(struct ra_graph *g,
  464. unsigned int (*callback)(struct ra_graph *g,
  465. BITSET_WORD *regs,
  466. void *data),
  467. void *data)
  468. {
  469. g->select_reg_callback = callback;
  470. g->select_reg_callback_data = data;
  471. }
  472. void
  473. ra_set_node_class(struct ra_graph *g,
  474. unsigned int n, unsigned int class)
  475. {
  476. g->nodes[n].class = class;
  477. }
  478. unsigned int
  479. ra_add_node(struct ra_graph *g, unsigned int class)
  480. {
  481. unsigned int n = g->count;
  482. ra_resize_interference_graph(g, g->count + 1);
  483. ra_set_node_class(g, n, class);
  484. return n;
  485. }
  486. void
  487. ra_add_node_interference(struct ra_graph *g,
  488. unsigned int n1, unsigned int n2)
  489. {
  490. if (n1 != n2 && !BITSET_TEST(g->nodes[n1].adjacency, n2)) {
  491. ra_add_node_adjacency(g, n1, n2);
  492. ra_add_node_adjacency(g, n2, n1);
  493. }
  494. }
  495. void
  496. ra_reset_node_interference(struct ra_graph *g, unsigned int n)
  497. {
  498. for (unsigned int i = 0; i < g->nodes[n].adjacency_count; i++)
  499. ra_node_remove_adjacency(g, g->nodes[n].adjacency_list[i], n);
  500. memset(g->nodes[n].adjacency, 0,
  501. BITSET_WORDS(g->count) * sizeof(BITSET_WORD));
  502. g->nodes[n].adjacency_count = 0;
  503. }
  504. static void
  505. update_pq_info(struct ra_graph *g, unsigned int n)
  506. {
  507. int i = n / BITSET_WORDBITS;
  508. int n_class = g->nodes[n].class;
  509. if (g->nodes[n].tmp.q_total < g->regs->classes[n_class]->p) {
  510. BITSET_SET(g->tmp.pq_test, n);
  511. } else if (g->tmp.min_q_total[i] != UINT_MAX) {
  512. /* Only update min_q_total and min_q_node if min_q_total != UINT_MAX so
  513. * that we don't update while we have stale data and accidentally mark
  514. * it as non-stale. Also, in order to remain consistent with the old
  515. * naive implementation of the algorithm, we do a lexicographical sort
  516. * to ensure that we always choose the node with the highest node index.
  517. */
  518. if (g->nodes[n].tmp.q_total < g->tmp.min_q_total[i] ||
  519. (g->nodes[n].tmp.q_total == g->tmp.min_q_total[i] &&
  520. n > g->tmp.min_q_node[i])) {
  521. g->tmp.min_q_total[i] = g->nodes[n].tmp.q_total;
  522. g->tmp.min_q_node[i] = n;
  523. }
  524. }
  525. }
  526. static void
  527. add_node_to_stack(struct ra_graph *g, unsigned int n)
  528. {
  529. unsigned int i;
  530. int n_class = g->nodes[n].class;
  531. assert(!BITSET_TEST(g->tmp.in_stack, n));
  532. for (i = 0; i < g->nodes[n].adjacency_count; i++) {
  533. unsigned int n2 = g->nodes[n].adjacency_list[i];
  534. unsigned int n2_class = g->nodes[n2].class;
  535. if (!BITSET_TEST(g->tmp.in_stack, n2) &&
  536. !BITSET_TEST(g->tmp.reg_assigned, n2)) {
  537. assert(g->nodes[n2].tmp.q_total >= g->regs->classes[n2_class]->q[n_class]);
  538. g->nodes[n2].tmp.q_total -= g->regs->classes[n2_class]->q[n_class];
  539. update_pq_info(g, n2);
  540. }
  541. }
  542. g->tmp.stack[g->tmp.stack_count] = n;
  543. g->tmp.stack_count++;
  544. BITSET_SET(g->tmp.in_stack, n);
  545. /* Flag the min_q_total for n's block as dirty so it gets recalculated */
  546. g->tmp.min_q_total[n / BITSET_WORDBITS] = UINT_MAX;
  547. }
  548. /**
  549. * Simplifies the interference graph by pushing all
  550. * trivially-colorable nodes into a stack of nodes to be colored,
  551. * removing them from the graph, and rinsing and repeating.
  552. *
  553. * If we encounter a case where we can't push any nodes on the stack, then
  554. * we optimistically choose a node and push it on the stack. We heuristically
  555. * push the node with the lowest total q value, since it has the fewest
  556. * neighbors and therefore is most likely to be allocated.
  557. */
  558. static void
  559. ra_simplify(struct ra_graph *g)
  560. {
  561. bool progress = true;
  562. unsigned int stack_optimistic_start = UINT_MAX;
  563. /* Figure out the high bit and bit mask for the first iteration of a loop
  564. * over BITSET_WORDs.
  565. */
  566. const unsigned int top_word_high_bit = (g->count - 1) % BITSET_WORDBITS;
  567. /* Do a quick pre-pass to set things up */
  568. g->tmp.stack_count = 0;
  569. for (int i = BITSET_WORDS(g->count) - 1, high_bit = top_word_high_bit;
  570. i >= 0; i--, high_bit = BITSET_WORDBITS - 1) {
  571. g->tmp.in_stack[i] = 0;
  572. g->tmp.reg_assigned[i] = 0;
  573. g->tmp.pq_test[i] = 0;
  574. g->tmp.min_q_total[i] = UINT_MAX;
  575. g->tmp.min_q_node[i] = UINT_MAX;
  576. for (int j = high_bit; j >= 0; j--) {
  577. unsigned int n = i * BITSET_WORDBITS + j;
  578. g->nodes[n].reg = g->nodes[n].forced_reg;
  579. g->nodes[n].tmp.q_total = g->nodes[n].q_total;
  580. if (g->nodes[n].reg != NO_REG)
  581. g->tmp.reg_assigned[i] |= BITSET_BIT(j);
  582. update_pq_info(g, n);
  583. }
  584. }
  585. while (progress) {
  586. unsigned int min_q_total = UINT_MAX;
  587. unsigned int min_q_node = UINT_MAX;
  588. progress = false;
  589. for (int i = BITSET_WORDS(g->count) - 1, high_bit = top_word_high_bit;
  590. i >= 0; i--, high_bit = BITSET_WORDBITS - 1) {
  591. BITSET_WORD mask = ~(BITSET_WORD)0 >> (31 - high_bit);
  592. BITSET_WORD skip = g->tmp.in_stack[i] | g->tmp.reg_assigned[i];
  593. if (skip == mask)
  594. continue;
  595. BITSET_WORD pq = g->tmp.pq_test[i] & ~skip;
  596. if (pq) {
  597. /* In this case, we have stuff we can immediately take off the
  598. * stack. This also means that we're guaranteed to make progress
  599. * and we don't need to bother updating lowest_q_total because we
  600. * know we're going to loop again before attempting to do anything
  601. * optimistic.
  602. */
  603. for (int j = high_bit; j >= 0; j--) {
  604. if (pq & BITSET_BIT(j)) {
  605. unsigned int n = i * BITSET_WORDBITS + j;
  606. assert(n < g->count);
  607. add_node_to_stack(g, n);
  608. /* add_node_to_stack() may update pq_test for this word so
  609. * we need to update our local copy.
  610. */
  611. pq = g->tmp.pq_test[i] & ~skip;
  612. progress = true;
  613. }
  614. }
  615. } else if (!progress) {
  616. if (g->tmp.min_q_total[i] == UINT_MAX) {
  617. /* The min_q_total and min_q_node are dirty because we added
  618. * one of these nodes to the stack. It needs to be
  619. * recalculated.
  620. */
  621. for (int j = high_bit; j >= 0; j--) {
  622. if (skip & BITSET_BIT(j))
  623. continue;
  624. unsigned int n = i * BITSET_WORDBITS + j;
  625. assert(n < g->count);
  626. if (g->nodes[n].tmp.q_total < g->tmp.min_q_total[i]) {
  627. g->tmp.min_q_total[i] = g->nodes[n].tmp.q_total;
  628. g->tmp.min_q_node[i] = n;
  629. }
  630. }
  631. }
  632. if (g->tmp.min_q_total[i] < min_q_total) {
  633. min_q_node = g->tmp.min_q_node[i];
  634. min_q_total = g->tmp.min_q_total[i];
  635. }
  636. }
  637. }
  638. if (!progress && min_q_total != UINT_MAX) {
  639. if (stack_optimistic_start == UINT_MAX)
  640. stack_optimistic_start = g->tmp.stack_count;
  641. add_node_to_stack(g, min_q_node);
  642. progress = true;
  643. }
  644. }
  645. g->tmp.stack_optimistic_start = stack_optimistic_start;
  646. }
  647. static bool
  648. ra_any_neighbors_conflict(struct ra_graph *g, unsigned int n, unsigned int r)
  649. {
  650. unsigned int i;
  651. for (i = 0; i < g->nodes[n].adjacency_count; i++) {
  652. unsigned int n2 = g->nodes[n].adjacency_list[i];
  653. if (!BITSET_TEST(g->tmp.in_stack, n2) &&
  654. BITSET_TEST(g->regs->regs[r].conflicts, g->nodes[n2].reg)) {
  655. return true;
  656. }
  657. }
  658. return false;
  659. }
  660. /* Computes a bitfield of what regs are available for a given register
  661. * selection.
  662. *
  663. * This lets drivers implement a more complicated policy than our simple first
  664. * or round robin policies (which don't require knowing the whole bitset)
  665. */
  666. static bool
  667. ra_compute_available_regs(struct ra_graph *g, unsigned int n, BITSET_WORD *regs)
  668. {
  669. struct ra_class *c = g->regs->classes[g->nodes[n].class];
  670. /* Populate with the set of regs that are in the node's class. */
  671. memcpy(regs, c->regs, BITSET_WORDS(g->regs->count) * sizeof(BITSET_WORD));
  672. /* Remove any regs that conflict with nodes that we're adjacent to and have
  673. * already colored.
  674. */
  675. for (int i = 0; i < g->nodes[n].adjacency_count; i++) {
  676. unsigned int n2 = g->nodes[n].adjacency_list[i];
  677. unsigned int r = g->nodes[n2].reg;
  678. if (!BITSET_TEST(g->tmp.in_stack, n2)) {
  679. for (int j = 0; j < BITSET_WORDS(g->regs->count); j++)
  680. regs[j] &= ~g->regs->regs[r].conflicts[j];
  681. }
  682. }
  683. for (int i = 0; i < BITSET_WORDS(g->regs->count); i++) {
  684. if (regs[i])
  685. return true;
  686. }
  687. return false;
  688. }
  689. /**
  690. * Pops nodes from the stack back into the graph, coloring them with
  691. * registers as they go.
  692. *
  693. * If all nodes were trivially colorable, then this must succeed. If
  694. * not (optimistic coloring), then it may return false;
  695. */
  696. static bool
  697. ra_select(struct ra_graph *g)
  698. {
  699. int start_search_reg = 0;
  700. BITSET_WORD *select_regs = NULL;
  701. if (g->select_reg_callback)
  702. select_regs = malloc(BITSET_WORDS(g->regs->count) * sizeof(BITSET_WORD));
  703. while (g->tmp.stack_count != 0) {
  704. unsigned int ri;
  705. unsigned int r = -1;
  706. int n = g->tmp.stack[g->tmp.stack_count - 1];
  707. struct ra_class *c = g->regs->classes[g->nodes[n].class];
  708. /* set this to false even if we return here so that
  709. * ra_get_best_spill_node() considers this node later.
  710. */
  711. BITSET_CLEAR(g->tmp.in_stack, n);
  712. if (g->select_reg_callback) {
  713. if (!ra_compute_available_regs(g, n, select_regs)) {
  714. free(select_regs);
  715. return false;
  716. }
  717. r = g->select_reg_callback(g, select_regs, g->select_reg_callback_data);
  718. } else {
  719. /* Find the lowest-numbered reg which is not used by a member
  720. * of the graph adjacent to us.
  721. */
  722. for (ri = 0; ri < g->regs->count; ri++) {
  723. r = (start_search_reg + ri) % g->regs->count;
  724. if (!reg_belongs_to_class(r, c))
  725. continue;
  726. if (!ra_any_neighbors_conflict(g, n, r))
  727. break;
  728. }
  729. if (ri >= g->regs->count)
  730. return false;
  731. }
  732. g->nodes[n].reg = r;
  733. g->tmp.stack_count--;
  734. /* Rotate the starting point except for any nodes above the lowest
  735. * optimistically colorable node. The likelihood that we will succeed
  736. * at allocating optimistically colorable nodes is highly dependent on
  737. * the way that the previous nodes popped off the stack are laid out.
  738. * The round-robin strategy increases the fragmentation of the register
  739. * file and decreases the number of nearby nodes assigned to the same
  740. * color, what increases the likelihood of spilling with respect to the
  741. * dense packing strategy.
  742. */
  743. if (g->regs->round_robin &&
  744. g->tmp.stack_count - 1 <= g->tmp.stack_optimistic_start)
  745. start_search_reg = r + 1;
  746. }
  747. free(select_regs);
  748. return true;
  749. }
  750. bool
  751. ra_allocate(struct ra_graph *g)
  752. {
  753. ra_simplify(g);
  754. return ra_select(g);
  755. }
  756. unsigned int
  757. ra_get_node_reg(struct ra_graph *g, unsigned int n)
  758. {
  759. if (g->nodes[n].forced_reg != NO_REG)
  760. return g->nodes[n].forced_reg;
  761. else
  762. return g->nodes[n].reg;
  763. }
  764. /**
  765. * Forces a node to a specific register. This can be used to avoid
  766. * creating a register class containing one node when handling data
  767. * that must live in a fixed location and is known to not conflict
  768. * with other forced register assignment (as is common with shader
  769. * input data). These nodes do not end up in the stack during
  770. * ra_simplify(), and thus at ra_select() time it is as if they were
  771. * the first popped off the stack and assigned their fixed locations.
  772. * Nodes that use this function do not need to be assigned a register
  773. * class.
  774. *
  775. * Must be called before ra_simplify().
  776. */
  777. void
  778. ra_set_node_reg(struct ra_graph *g, unsigned int n, unsigned int reg)
  779. {
  780. g->nodes[n].forced_reg = reg;
  781. }
  782. static float
  783. ra_get_spill_benefit(struct ra_graph *g, unsigned int n)
  784. {
  785. unsigned int j;
  786. float benefit = 0;
  787. int n_class = g->nodes[n].class;
  788. /* Define the benefit of eliminating an interference between n, n2
  789. * through spilling as q(C, B) / p(C). This is similar to the
  790. * "count number of edges" approach of traditional graph coloring,
  791. * but takes classes into account.
  792. */
  793. for (j = 0; j < g->nodes[n].adjacency_count; j++) {
  794. unsigned int n2 = g->nodes[n].adjacency_list[j];
  795. unsigned int n2_class = g->nodes[n2].class;
  796. benefit += ((float)g->regs->classes[n_class]->q[n2_class] /
  797. g->regs->classes[n_class]->p);
  798. }
  799. return benefit;
  800. }
  801. /**
  802. * Returns a node number to be spilled according to the cost/benefit using
  803. * the pq test, or -1 if there are no spillable nodes.
  804. */
  805. int
  806. ra_get_best_spill_node(struct ra_graph *g)
  807. {
  808. unsigned int best_node = -1;
  809. float best_benefit = 0.0;
  810. unsigned int n;
  811. /* Consider any nodes that we colored successfully or the node we failed to
  812. * color for spilling. When we failed to color a node in ra_select(), we
  813. * only considered these nodes, so spilling any other ones would not result
  814. * in us making progress.
  815. */
  816. for (n = 0; n < g->count; n++) {
  817. float cost = g->nodes[n].spill_cost;
  818. float benefit;
  819. if (cost <= 0.0f)
  820. continue;
  821. if (BITSET_TEST(g->tmp.in_stack, n))
  822. continue;
  823. benefit = ra_get_spill_benefit(g, n);
  824. if (benefit / cost > best_benefit) {
  825. best_benefit = benefit / cost;
  826. best_node = n;
  827. }
  828. }
  829. return best_node;
  830. }
  831. /**
  832. * Only nodes with a spill cost set (cost != 0.0) will be considered
  833. * for register spilling.
  834. */
  835. void
  836. ra_set_node_spill_cost(struct ra_graph *g, unsigned int n, float cost)
  837. {
  838. g->nodes[n].spill_cost = cost;
  839. }