| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981 |
- /*
- * Copyright © 2010 Intel Corporation
- *
- * Permission is hereby granted, free of charge, to any person obtaining a
- * copy of this software and associated documentation files (the "Software"),
- * to deal in the Software without restriction, including without limitation
- * the rights to use, copy, modify, merge, publish, distribute, sublicense,
- * and/or sell copies of the Software, and to permit persons to whom the
- * Software is furnished to do so, subject to the following conditions:
- *
- * The above copyright notice and this permission notice (including the next
- * paragraph) shall be included in all copies or substantial portions of the
- * Software.
- *
- * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
- * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
- * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
- * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
- * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
- * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
- * IN THE SOFTWARE.
- *
- * Authors:
- * Eric Anholt <eric@anholt.net>
- *
- */
-
- /** @file register_allocate.c
- *
- * Graph-coloring register allocator.
- *
- * The basic idea of graph coloring is to make a node in a graph for
- * every thing that needs a register (color) number assigned, and make
- * edges in the graph between nodes that interfere (can't be allocated
- * to the same register at the same time).
- *
- * During the "simplify" process, any any node with fewer edges than
- * there are registers means that that edge can get assigned a
- * register regardless of what its neighbors choose, so that node is
- * pushed on a stack and removed (with its edges) from the graph.
- * That likely causes other nodes to become trivially colorable as well.
- *
- * Then during the "select" process, nodes are popped off of that
- * stack, their edges restored, and assigned a color different from
- * their neighbors. Because they were pushed on the stack only when
- * they were trivially colorable, any color chosen won't interfere
- * with the registers to be popped later.
- *
- * The downside to most graph coloring is that real hardware often has
- * limitations, like registers that need to be allocated to a node in
- * pairs, or aligned on some boundary. This implementation follows
- * the paper "Retargetable Graph-Coloring Register Allocation for
- * Irregular Architectures" by Johan Runeson and Sven-Olof Nyström.
- *
- * In this system, there are register classes each containing various
- * registers, and registers may interfere with other registers. For
- * example, one might have a class of base registers, and a class of
- * aligned register pairs that would each interfere with their pair of
- * the base registers. Each node has a register class it needs to be
- * assigned to. Define p(B) to be the size of register class B, and
- * q(B,C) to be the number of registers in B that the worst choice
- * register in C could conflict with. Then, this system replaces the
- * basic graph coloring test of "fewer edges from this node than there
- * are registers" with "For this node of class B, the sum of q(B,C)
- * for each neighbor node of class C is less than pB".
- *
- * A nice feature of the pq test is that q(B,C) can be computed once
- * up front and stored in a 2-dimensional array, so that the cost of
- * coloring a node is constant with the number of registers. We do
- * this during ra_set_finalize().
- */
-
- #include <stdbool.h>
-
- #include "ralloc.h"
- #include "main/imports.h"
- #include "main/macros.h"
- #include "util/bitset.h"
- #include "register_allocate.h"
-
- #define NO_REG ~0U
-
- struct ra_reg {
- BITSET_WORD *conflicts;
- unsigned int *conflict_list;
- unsigned int conflict_list_size;
- unsigned int num_conflicts;
- };
-
- struct ra_regs {
- struct ra_reg *regs;
- unsigned int count;
-
- struct ra_class **classes;
- unsigned int class_count;
-
- bool round_robin;
- };
-
- struct ra_class {
- /**
- * Bitset indicating which registers belong to this class.
- *
- * (If bit N is set, then register N belongs to this class.)
- */
- BITSET_WORD *regs;
-
- /**
- * p(B) in Runeson/Nyström paper.
- *
- * This is "how many regs are in the set."
- */
- unsigned int p;
-
- /**
- * q(B,C) (indexed by C, B is this register class) in
- * Runeson/Nyström paper. This is "how many registers of B could
- * the worst choice register from C conflict with".
- */
- unsigned int *q;
- };
-
- struct ra_node {
- /** @{
- *
- * List of which nodes this node interferes with. This should be
- * symmetric with the other node.
- */
- BITSET_WORD *adjacency;
- unsigned int *adjacency_list;
- unsigned int adjacency_list_size;
- unsigned int adjacency_count;
- /** @} */
-
- unsigned int class;
-
- /* Client-assigned register, if assigned, or NO_REG. */
- unsigned int forced_reg;
-
- /* Register, if assigned, or NO_REG. */
- unsigned int reg;
-
- /**
- * The q total, as defined in the Runeson/Nyström paper, for all the
- * interfering nodes not in the stack.
- */
- unsigned int q_total;
-
- /* For an implementation that needs register spilling, this is the
- * approximate cost of spilling this node.
- */
- float spill_cost;
-
- /* Temporary data for the algorithm to scratch around in */
- struct {
- /**
- * Temporary version of q_total which we decrement as things are placed
- * into the stack.
- */
- unsigned int q_total;
- } tmp;
- };
-
- struct ra_graph {
- struct ra_regs *regs;
- /**
- * the variables that need register allocation.
- */
- struct ra_node *nodes;
- unsigned int count; /**< count of nodes. */
-
- unsigned int alloc; /**< count of nodes allocated. */
-
- unsigned int (*select_reg_callback)(struct ra_graph *g, BITSET_WORD *regs,
- void *data);
- void *select_reg_callback_data;
-
- /* Temporary data for the algorithm to scratch around in */
- struct {
- unsigned int *stack;
- unsigned int stack_count;
-
- /** Bit-set indicating, for each register, if it's in the stack */
- BITSET_WORD *in_stack;
-
- /** Bit-set indicating, for each register, if it pre-assigned */
- BITSET_WORD *reg_assigned;
-
- /** Bit-set indicating, for each register, the value of the pq test */
- BITSET_WORD *pq_test;
-
- /** For each BITSET_WORD, the minimum q value or ~0 if unknown */
- unsigned int *min_q_total;
-
- /*
- * * For each BITSET_WORD, the node with the minimum q_total if
- * min_q_total[i] != ~0.
- */
- unsigned int *min_q_node;
-
- /**
- * Tracks the start of the set of optimistically-colored registers in the
- * stack.
- */
- unsigned int stack_optimistic_start;
- } tmp;
- };
-
- /**
- * Creates a set of registers for the allocator.
- *
- * mem_ctx is a ralloc context for the allocator. The reg set may be freed
- * using ralloc_free().
- */
- struct ra_regs *
- ra_alloc_reg_set(void *mem_ctx, unsigned int count, bool need_conflict_lists)
- {
- unsigned int i;
- struct ra_regs *regs;
-
- regs = rzalloc(mem_ctx, struct ra_regs);
- regs->count = count;
- regs->regs = rzalloc_array(regs, struct ra_reg, count);
-
- for (i = 0; i < count; i++) {
- regs->regs[i].conflicts = rzalloc_array(regs->regs, BITSET_WORD,
- BITSET_WORDS(count));
- BITSET_SET(regs->regs[i].conflicts, i);
-
- if (need_conflict_lists) {
- regs->regs[i].conflict_list = ralloc_array(regs->regs,
- unsigned int, 4);
- regs->regs[i].conflict_list_size = 4;
- regs->regs[i].conflict_list[0] = i;
- } else {
- regs->regs[i].conflict_list = NULL;
- regs->regs[i].conflict_list_size = 0;
- }
- regs->regs[i].num_conflicts = 1;
- }
-
- return regs;
- }
-
- /**
- * The register allocator by default prefers to allocate low register numbers,
- * since it was written for hardware (gen4/5 Intel) that is limited in its
- * multithreadedness by the number of registers used in a given shader.
- *
- * However, for hardware without that restriction, densely packed register
- * allocation can put serious constraints on instruction scheduling. This
- * function tells the allocator to rotate around the registers if possible as
- * it allocates the nodes.
- */
- void
- ra_set_allocate_round_robin(struct ra_regs *regs)
- {
- regs->round_robin = true;
- }
-
- static void
- ra_add_conflict_list(struct ra_regs *regs, unsigned int r1, unsigned int r2)
- {
- struct ra_reg *reg1 = ®s->regs[r1];
-
- if (reg1->conflict_list) {
- if (reg1->conflict_list_size == reg1->num_conflicts) {
- reg1->conflict_list_size *= 2;
- reg1->conflict_list = reralloc(regs->regs, reg1->conflict_list,
- unsigned int, reg1->conflict_list_size);
- }
- reg1->conflict_list[reg1->num_conflicts++] = r2;
- }
- BITSET_SET(reg1->conflicts, r2);
- }
-
- void
- ra_add_reg_conflict(struct ra_regs *regs, unsigned int r1, unsigned int r2)
- {
- if (!BITSET_TEST(regs->regs[r1].conflicts, r2)) {
- ra_add_conflict_list(regs, r1, r2);
- ra_add_conflict_list(regs, r2, r1);
- }
- }
-
- /**
- * Adds a conflict between base_reg and reg, and also between reg and
- * anything that base_reg conflicts with.
- *
- * This can simplify code for setting up multiple register classes
- * which are aggregates of some base hardware registers, compared to
- * explicitly using ra_add_reg_conflict.
- */
- void
- ra_add_transitive_reg_conflict(struct ra_regs *regs,
- unsigned int base_reg, unsigned int reg)
- {
- unsigned int i;
-
- ra_add_reg_conflict(regs, reg, base_reg);
-
- for (i = 0; i < regs->regs[base_reg].num_conflicts; i++) {
- ra_add_reg_conflict(regs, reg, regs->regs[base_reg].conflict_list[i]);
- }
- }
-
- /**
- * Makes every conflict on the given register transitive. In other words,
- * every register that conflicts with r will now conflict with every other
- * register conflicting with r.
- *
- * This can simplify code for setting up multiple register classes
- * which are aggregates of some base hardware registers, compared to
- * explicitly using ra_add_reg_conflict.
- */
- void
- ra_make_reg_conflicts_transitive(struct ra_regs *regs, unsigned int r)
- {
- struct ra_reg *reg = ®s->regs[r];
- BITSET_WORD tmp;
- int c;
-
- BITSET_FOREACH_SET(c, tmp, reg->conflicts, regs->count) {
- struct ra_reg *other = ®s->regs[c];
- unsigned i;
- for (i = 0; i < BITSET_WORDS(regs->count); i++)
- other->conflicts[i] |= reg->conflicts[i];
- }
- }
-
- unsigned int
- ra_alloc_reg_class(struct ra_regs *regs)
- {
- struct ra_class *class;
-
- regs->classes = reralloc(regs->regs, regs->classes, struct ra_class *,
- regs->class_count + 1);
-
- class = rzalloc(regs, struct ra_class);
- regs->classes[regs->class_count] = class;
-
- class->regs = rzalloc_array(class, BITSET_WORD, BITSET_WORDS(regs->count));
-
- return regs->class_count++;
- }
-
- void
- ra_class_add_reg(struct ra_regs *regs, unsigned int c, unsigned int r)
- {
- struct ra_class *class = regs->classes[c];
-
- BITSET_SET(class->regs, r);
- class->p++;
- }
-
- /**
- * Returns true if the register belongs to the given class.
- */
- static bool
- reg_belongs_to_class(unsigned int r, struct ra_class *c)
- {
- return BITSET_TEST(c->regs, r);
- }
-
- /**
- * Must be called after all conflicts and register classes have been
- * set up and before the register set is used for allocation.
- * To avoid costly q value computation, use the q_values paramater
- * to pass precomputed q values to this function.
- */
- void
- ra_set_finalize(struct ra_regs *regs, unsigned int **q_values)
- {
- unsigned int b, c;
-
- for (b = 0; b < regs->class_count; b++) {
- regs->classes[b]->q = ralloc_array(regs, unsigned int, regs->class_count);
- }
-
- if (q_values) {
- for (b = 0; b < regs->class_count; b++) {
- for (c = 0; c < regs->class_count; c++) {
- regs->classes[b]->q[c] = q_values[b][c];
- }
- }
- } else {
- /* Compute, for each class B and C, how many regs of B an
- * allocation to C could conflict with.
- */
- for (b = 0; b < regs->class_count; b++) {
- for (c = 0; c < regs->class_count; c++) {
- unsigned int rc;
- int max_conflicts = 0;
-
- for (rc = 0; rc < regs->count; rc++) {
- int conflicts = 0;
- unsigned int i;
-
- if (!reg_belongs_to_class(rc, regs->classes[c]))
- continue;
-
- for (i = 0; i < regs->regs[rc].num_conflicts; i++) {
- unsigned int rb = regs->regs[rc].conflict_list[i];
- if (reg_belongs_to_class(rb, regs->classes[b]))
- conflicts++;
- }
- max_conflicts = MAX2(max_conflicts, conflicts);
- }
- regs->classes[b]->q[c] = max_conflicts;
- }
- }
- }
-
- for (b = 0; b < regs->count; b++) {
- ralloc_free(regs->regs[b].conflict_list);
- regs->regs[b].conflict_list = NULL;
- }
- }
-
- static void
- ra_add_node_adjacency(struct ra_graph *g, unsigned int n1, unsigned int n2)
- {
- BITSET_SET(g->nodes[n1].adjacency, n2);
-
- assert(n1 != n2);
-
- int n1_class = g->nodes[n1].class;
- int n2_class = g->nodes[n2].class;
- g->nodes[n1].q_total += g->regs->classes[n1_class]->q[n2_class];
-
- if (g->nodes[n1].adjacency_count >=
- g->nodes[n1].adjacency_list_size) {
- g->nodes[n1].adjacency_list_size *= 2;
- g->nodes[n1].adjacency_list = reralloc(g, g->nodes[n1].adjacency_list,
- unsigned int,
- g->nodes[n1].adjacency_list_size);
- }
-
- g->nodes[n1].adjacency_list[g->nodes[n1].adjacency_count] = n2;
- g->nodes[n1].adjacency_count++;
- }
-
- static void
- ra_node_remove_adjacency(struct ra_graph *g, unsigned int n1, unsigned int n2)
- {
- BITSET_CLEAR(g->nodes[n1].adjacency, n2);
-
- assert(n1 != n2);
-
- int n1_class = g->nodes[n1].class;
- int n2_class = g->nodes[n2].class;
- g->nodes[n1].q_total -= g->regs->classes[n1_class]->q[n2_class];
-
- unsigned int i;
- for (i = 0; i < g->nodes[n1].adjacency_count; i++) {
- if (g->nodes[n1].adjacency_list[i] == n2) {
- memmove(&g->nodes[n1].adjacency_list[i],
- &g->nodes[n1].adjacency_list[i + 1],
- (g->nodes[n1].adjacency_count - i - 1) *
- sizeof(g->nodes[n1].adjacency_list[0]));
- break;
- }
- }
- assert(i < g->nodes[n1].adjacency_count);
- g->nodes[n1].adjacency_count--;
- }
-
- static void
- ra_realloc_interference_graph(struct ra_graph *g, unsigned int alloc)
- {
- if (alloc <= g->alloc)
- return;
-
- /* If we always have a whole number of BITSET_WORDs, it makes it much
- * easier to memset the top of the growing bitsets.
- */
- assert(g->alloc % BITSET_WORDBITS == 0);
- alloc = ALIGN(alloc, BITSET_WORDBITS);
-
- g->nodes = reralloc(g, g->nodes, struct ra_node, alloc);
-
- unsigned g_bitset_count = BITSET_WORDS(g->alloc);
- unsigned bitset_count = BITSET_WORDS(alloc);
- /* For nodes already in the graph, we just have to grow the adjacency set */
- for (unsigned i = 0; i < g->alloc; i++) {
- assert(g->nodes[i].adjacency != NULL);
- g->nodes[i].adjacency = rerzalloc(g, g->nodes[i].adjacency, BITSET_WORD,
- g_bitset_count, bitset_count);
- }
-
- /* For new nodes, we have to fully initialize them */
- for (unsigned i = g->alloc; i < alloc; i++) {
- memset(&g->nodes[i], 0, sizeof(g->nodes[i]));
- g->nodes[i].adjacency = rzalloc_array(g, BITSET_WORD, bitset_count);
- g->nodes[i].adjacency_list_size = 4;
- g->nodes[i].adjacency_list =
- ralloc_array(g, unsigned int, g->nodes[i].adjacency_list_size);
- g->nodes[i].adjacency_count = 0;
- g->nodes[i].q_total = 0;
-
- g->nodes[i].forced_reg = NO_REG;
- g->nodes[i].reg = NO_REG;
- }
-
- /* These are scratch values and don't need to be zeroed. We'll clear them
- * as part of ra_select() setup.
- */
- g->tmp.stack = reralloc(g, g->tmp.stack, unsigned int, alloc);
- g->tmp.in_stack = reralloc(g, g->tmp.in_stack, BITSET_WORD, bitset_count);
-
- g->tmp.reg_assigned = reralloc(g, g->tmp.reg_assigned, BITSET_WORD,
- bitset_count);
- g->tmp.pq_test = reralloc(g, g->tmp.pq_test, BITSET_WORD, bitset_count);
- g->tmp.min_q_total = reralloc(g, g->tmp.min_q_total, unsigned int,
- bitset_count);
- g->tmp.min_q_node = reralloc(g, g->tmp.min_q_node, unsigned int,
- bitset_count);
-
- g->alloc = alloc;
- }
-
- struct ra_graph *
- ra_alloc_interference_graph(struct ra_regs *regs, unsigned int count)
- {
- struct ra_graph *g;
-
- g = rzalloc(NULL, struct ra_graph);
- g->regs = regs;
- g->count = count;
- ra_realloc_interference_graph(g, count);
-
- return g;
- }
-
- void
- ra_resize_interference_graph(struct ra_graph *g, unsigned int count)
- {
- g->count = count;
- if (count > g->alloc)
- ra_realloc_interference_graph(g, g->alloc * 2);
- }
-
- void ra_set_select_reg_callback(struct ra_graph *g,
- unsigned int (*callback)(struct ra_graph *g,
- BITSET_WORD *regs,
- void *data),
- void *data)
- {
- g->select_reg_callback = callback;
- g->select_reg_callback_data = data;
- }
-
- void
- ra_set_node_class(struct ra_graph *g,
- unsigned int n, unsigned int class)
- {
- g->nodes[n].class = class;
- }
-
- unsigned int
- ra_add_node(struct ra_graph *g, unsigned int class)
- {
- unsigned int n = g->count;
- ra_resize_interference_graph(g, g->count + 1);
-
- ra_set_node_class(g, n, class);
-
- return n;
- }
-
- void
- ra_add_node_interference(struct ra_graph *g,
- unsigned int n1, unsigned int n2)
- {
- if (n1 != n2 && !BITSET_TEST(g->nodes[n1].adjacency, n2)) {
- ra_add_node_adjacency(g, n1, n2);
- ra_add_node_adjacency(g, n2, n1);
- }
- }
-
- void
- ra_reset_node_interference(struct ra_graph *g, unsigned int n)
- {
- for (unsigned int i = 0; i < g->nodes[n].adjacency_count; i++)
- ra_node_remove_adjacency(g, g->nodes[n].adjacency_list[i], n);
-
- memset(g->nodes[n].adjacency, 0,
- BITSET_WORDS(g->count) * sizeof(BITSET_WORD));
- g->nodes[n].adjacency_count = 0;
- }
-
- static void
- update_pq_info(struct ra_graph *g, unsigned int n)
- {
- int i = n / BITSET_WORDBITS;
- int n_class = g->nodes[n].class;
- if (g->nodes[n].tmp.q_total < g->regs->classes[n_class]->p) {
- BITSET_SET(g->tmp.pq_test, n);
- } else if (g->tmp.min_q_total[i] != UINT_MAX) {
- /* Only update min_q_total and min_q_node if min_q_total != UINT_MAX so
- * that we don't update while we have stale data and accidentally mark
- * it as non-stale. Also, in order to remain consistent with the old
- * naive implementation of the algorithm, we do a lexicographical sort
- * to ensure that we always choose the node with the highest node index.
- */
- if (g->nodes[n].tmp.q_total < g->tmp.min_q_total[i] ||
- (g->nodes[n].tmp.q_total == g->tmp.min_q_total[i] &&
- n > g->tmp.min_q_node[i])) {
- g->tmp.min_q_total[i] = g->nodes[n].tmp.q_total;
- g->tmp.min_q_node[i] = n;
- }
- }
- }
-
- static void
- add_node_to_stack(struct ra_graph *g, unsigned int n)
- {
- unsigned int i;
- int n_class = g->nodes[n].class;
-
- assert(!BITSET_TEST(g->tmp.in_stack, n));
-
- for (i = 0; i < g->nodes[n].adjacency_count; i++) {
- unsigned int n2 = g->nodes[n].adjacency_list[i];
- unsigned int n2_class = g->nodes[n2].class;
-
- if (!BITSET_TEST(g->tmp.in_stack, n2) &&
- !BITSET_TEST(g->tmp.reg_assigned, n2)) {
- assert(g->nodes[n2].tmp.q_total >= g->regs->classes[n2_class]->q[n_class]);
- g->nodes[n2].tmp.q_total -= g->regs->classes[n2_class]->q[n_class];
- update_pq_info(g, n2);
- }
- }
-
- g->tmp.stack[g->tmp.stack_count] = n;
- g->tmp.stack_count++;
- BITSET_SET(g->tmp.in_stack, n);
-
- /* Flag the min_q_total for n's block as dirty so it gets recalculated */
- g->tmp.min_q_total[n / BITSET_WORDBITS] = UINT_MAX;
- }
-
- /**
- * Simplifies the interference graph by pushing all
- * trivially-colorable nodes into a stack of nodes to be colored,
- * removing them from the graph, and rinsing and repeating.
- *
- * If we encounter a case where we can't push any nodes on the stack, then
- * we optimistically choose a node and push it on the stack. We heuristically
- * push the node with the lowest total q value, since it has the fewest
- * neighbors and therefore is most likely to be allocated.
- */
- static void
- ra_simplify(struct ra_graph *g)
- {
- bool progress = true;
- unsigned int stack_optimistic_start = UINT_MAX;
-
- /* Figure out the high bit and bit mask for the first iteration of a loop
- * over BITSET_WORDs.
- */
- const unsigned int top_word_high_bit = (g->count - 1) % BITSET_WORDBITS;
-
- /* Do a quick pre-pass to set things up */
- g->tmp.stack_count = 0;
- for (int i = BITSET_WORDS(g->count) - 1, high_bit = top_word_high_bit;
- i >= 0; i--, high_bit = BITSET_WORDBITS - 1) {
- g->tmp.in_stack[i] = 0;
- g->tmp.reg_assigned[i] = 0;
- g->tmp.pq_test[i] = 0;
- g->tmp.min_q_total[i] = UINT_MAX;
- g->tmp.min_q_node[i] = UINT_MAX;
- for (int j = high_bit; j >= 0; j--) {
- unsigned int n = i * BITSET_WORDBITS + j;
- g->nodes[n].reg = g->nodes[n].forced_reg;
- g->nodes[n].tmp.q_total = g->nodes[n].q_total;
- if (g->nodes[n].reg != NO_REG)
- g->tmp.reg_assigned[i] |= BITSET_BIT(j);
- update_pq_info(g, n);
- }
- }
-
- while (progress) {
- unsigned int min_q_total = UINT_MAX;
- unsigned int min_q_node = UINT_MAX;
-
- progress = false;
-
- for (int i = BITSET_WORDS(g->count) - 1, high_bit = top_word_high_bit;
- i >= 0; i--, high_bit = BITSET_WORDBITS - 1) {
- BITSET_WORD mask = ~(BITSET_WORD)0 >> (31 - high_bit);
-
- BITSET_WORD skip = g->tmp.in_stack[i] | g->tmp.reg_assigned[i];
- if (skip == mask)
- continue;
-
- BITSET_WORD pq = g->tmp.pq_test[i] & ~skip;
- if (pq) {
- /* In this case, we have stuff we can immediately take off the
- * stack. This also means that we're guaranteed to make progress
- * and we don't need to bother updating lowest_q_total because we
- * know we're going to loop again before attempting to do anything
- * optimistic.
- */
- for (int j = high_bit; j >= 0; j--) {
- if (pq & BITSET_BIT(j)) {
- unsigned int n = i * BITSET_WORDBITS + j;
- assert(n < g->count);
- add_node_to_stack(g, n);
- /* add_node_to_stack() may update pq_test for this word so
- * we need to update our local copy.
- */
- pq = g->tmp.pq_test[i] & ~skip;
- progress = true;
- }
- }
- } else if (!progress) {
- if (g->tmp.min_q_total[i] == UINT_MAX) {
- /* The min_q_total and min_q_node are dirty because we added
- * one of these nodes to the stack. It needs to be
- * recalculated.
- */
- for (int j = high_bit; j >= 0; j--) {
- if (skip & BITSET_BIT(j))
- continue;
-
- unsigned int n = i * BITSET_WORDBITS + j;
- assert(n < g->count);
- if (g->nodes[n].tmp.q_total < g->tmp.min_q_total[i]) {
- g->tmp.min_q_total[i] = g->nodes[n].tmp.q_total;
- g->tmp.min_q_node[i] = n;
- }
- }
- }
- if (g->tmp.min_q_total[i] < min_q_total) {
- min_q_node = g->tmp.min_q_node[i];
- min_q_total = g->tmp.min_q_total[i];
- }
- }
- }
-
- if (!progress && min_q_total != UINT_MAX) {
- if (stack_optimistic_start == UINT_MAX)
- stack_optimistic_start = g->tmp.stack_count;
-
- add_node_to_stack(g, min_q_node);
- progress = true;
- }
- }
-
- g->tmp.stack_optimistic_start = stack_optimistic_start;
- }
-
- static bool
- ra_any_neighbors_conflict(struct ra_graph *g, unsigned int n, unsigned int r)
- {
- unsigned int i;
-
- for (i = 0; i < g->nodes[n].adjacency_count; i++) {
- unsigned int n2 = g->nodes[n].adjacency_list[i];
-
- if (!BITSET_TEST(g->tmp.in_stack, n2) &&
- BITSET_TEST(g->regs->regs[r].conflicts, g->nodes[n2].reg)) {
- return true;
- }
- }
-
- return false;
- }
-
- /* Computes a bitfield of what regs are available for a given register
- * selection.
- *
- * This lets drivers implement a more complicated policy than our simple first
- * or round robin policies (which don't require knowing the whole bitset)
- */
- static bool
- ra_compute_available_regs(struct ra_graph *g, unsigned int n, BITSET_WORD *regs)
- {
- struct ra_class *c = g->regs->classes[g->nodes[n].class];
-
- /* Populate with the set of regs that are in the node's class. */
- memcpy(regs, c->regs, BITSET_WORDS(g->regs->count) * sizeof(BITSET_WORD));
-
- /* Remove any regs that conflict with nodes that we're adjacent to and have
- * already colored.
- */
- for (int i = 0; i < g->nodes[n].adjacency_count; i++) {
- unsigned int n2 = g->nodes[n].adjacency_list[i];
- unsigned int r = g->nodes[n2].reg;
-
- if (!BITSET_TEST(g->tmp.in_stack, n2)) {
- for (int j = 0; j < BITSET_WORDS(g->regs->count); j++)
- regs[j] &= ~g->regs->regs[r].conflicts[j];
- }
- }
-
- for (int i = 0; i < BITSET_WORDS(g->regs->count); i++) {
- if (regs[i])
- return true;
- }
-
- return false;
- }
-
- /**
- * Pops nodes from the stack back into the graph, coloring them with
- * registers as they go.
- *
- * If all nodes were trivially colorable, then this must succeed. If
- * not (optimistic coloring), then it may return false;
- */
- static bool
- ra_select(struct ra_graph *g)
- {
- int start_search_reg = 0;
- BITSET_WORD *select_regs = NULL;
-
- if (g->select_reg_callback)
- select_regs = malloc(BITSET_WORDS(g->regs->count) * sizeof(BITSET_WORD));
-
- while (g->tmp.stack_count != 0) {
- unsigned int ri;
- unsigned int r = -1;
- int n = g->tmp.stack[g->tmp.stack_count - 1];
- struct ra_class *c = g->regs->classes[g->nodes[n].class];
-
- /* set this to false even if we return here so that
- * ra_get_best_spill_node() considers this node later.
- */
- BITSET_CLEAR(g->tmp.in_stack, n);
-
- if (g->select_reg_callback) {
- if (!ra_compute_available_regs(g, n, select_regs)) {
- free(select_regs);
- return false;
- }
-
- r = g->select_reg_callback(g, select_regs, g->select_reg_callback_data);
- } else {
- /* Find the lowest-numbered reg which is not used by a member
- * of the graph adjacent to us.
- */
- for (ri = 0; ri < g->regs->count; ri++) {
- r = (start_search_reg + ri) % g->regs->count;
- if (!reg_belongs_to_class(r, c))
- continue;
-
- if (!ra_any_neighbors_conflict(g, n, r))
- break;
- }
-
- if (ri >= g->regs->count)
- return false;
- }
-
- g->nodes[n].reg = r;
- g->tmp.stack_count--;
-
- /* Rotate the starting point except for any nodes above the lowest
- * optimistically colorable node. The likelihood that we will succeed
- * at allocating optimistically colorable nodes is highly dependent on
- * the way that the previous nodes popped off the stack are laid out.
- * The round-robin strategy increases the fragmentation of the register
- * file and decreases the number of nearby nodes assigned to the same
- * color, what increases the likelihood of spilling with respect to the
- * dense packing strategy.
- */
- if (g->regs->round_robin &&
- g->tmp.stack_count - 1 <= g->tmp.stack_optimistic_start)
- start_search_reg = r + 1;
- }
-
- free(select_regs);
-
- return true;
- }
-
- bool
- ra_allocate(struct ra_graph *g)
- {
- ra_simplify(g);
- return ra_select(g);
- }
-
- unsigned int
- ra_get_node_reg(struct ra_graph *g, unsigned int n)
- {
- if (g->nodes[n].forced_reg != NO_REG)
- return g->nodes[n].forced_reg;
- else
- return g->nodes[n].reg;
- }
-
- /**
- * Forces a node to a specific register. This can be used to avoid
- * creating a register class containing one node when handling data
- * that must live in a fixed location and is known to not conflict
- * with other forced register assignment (as is common with shader
- * input data). These nodes do not end up in the stack during
- * ra_simplify(), and thus at ra_select() time it is as if they were
- * the first popped off the stack and assigned their fixed locations.
- * Nodes that use this function do not need to be assigned a register
- * class.
- *
- * Must be called before ra_simplify().
- */
- void
- ra_set_node_reg(struct ra_graph *g, unsigned int n, unsigned int reg)
- {
- g->nodes[n].forced_reg = reg;
- }
-
- static float
- ra_get_spill_benefit(struct ra_graph *g, unsigned int n)
- {
- unsigned int j;
- float benefit = 0;
- int n_class = g->nodes[n].class;
-
- /* Define the benefit of eliminating an interference between n, n2
- * through spilling as q(C, B) / p(C). This is similar to the
- * "count number of edges" approach of traditional graph coloring,
- * but takes classes into account.
- */
- for (j = 0; j < g->nodes[n].adjacency_count; j++) {
- unsigned int n2 = g->nodes[n].adjacency_list[j];
- unsigned int n2_class = g->nodes[n2].class;
- benefit += ((float)g->regs->classes[n_class]->q[n2_class] /
- g->regs->classes[n_class]->p);
- }
-
- return benefit;
- }
-
- /**
- * Returns a node number to be spilled according to the cost/benefit using
- * the pq test, or -1 if there are no spillable nodes.
- */
- int
- ra_get_best_spill_node(struct ra_graph *g)
- {
- unsigned int best_node = -1;
- float best_benefit = 0.0;
- unsigned int n;
-
- /* Consider any nodes that we colored successfully or the node we failed to
- * color for spilling. When we failed to color a node in ra_select(), we
- * only considered these nodes, so spilling any other ones would not result
- * in us making progress.
- */
- for (n = 0; n < g->count; n++) {
- float cost = g->nodes[n].spill_cost;
- float benefit;
-
- if (cost <= 0.0f)
- continue;
-
- if (BITSET_TEST(g->tmp.in_stack, n))
- continue;
-
- benefit = ra_get_spill_benefit(g, n);
-
- if (benefit / cost > best_benefit) {
- best_benefit = benefit / cost;
- best_node = n;
- }
- }
-
- return best_node;
- }
-
- /**
- * Only nodes with a spill cost set (cost != 0.0) will be considered
- * for register spilling.
- */
- void
- ra_set_node_spill_cost(struct ra_graph *g, unsigned int n, float cost)
- {
- g->nodes[n].spill_cost = cost;
- }
|