|
|
@@ -44,6 +44,7 @@ |
|
|
|
#extension GL_ARB_gpu_shader_int64 : enable |
|
|
|
#extension GL_ARB_shader_bit_encoding : enable |
|
|
|
#extension GL_EXT_shader_integer_mix : enable |
|
|
|
#extension GL_MESA_shader_integer_functions : enable |
|
|
|
|
|
|
|
#pragma warning(off) |
|
|
|
|
|
|
@@ -216,3 +217,435 @@ __fge64(uint64_t a, uint64_t b) |
|
|
|
|
|
|
|
return !__flt64_nonnan(a, b); |
|
|
|
} |
|
|
|
|
|
|
|
/* Adds the 64-bit value formed by concatenating `a0' and `a1' to the 64-bit |
|
|
|
* value formed by concatenating `b0' and `b1'. Addition is modulo 2^64, so |
|
|
|
* any carry out is lost. The result is broken into two 32-bit pieces which |
|
|
|
* are stored at the locations pointed to by `z0Ptr' and `z1Ptr'. |
|
|
|
*/ |
|
|
|
void |
|
|
|
__add64(uint a0, uint a1, uint b0, uint b1, |
|
|
|
out uint z0Ptr, |
|
|
|
out uint z1Ptr) |
|
|
|
{ |
|
|
|
uint z1 = a1 + b1; |
|
|
|
z1Ptr = z1; |
|
|
|
z0Ptr = a0 + b0 + uint(z1 < a1); |
|
|
|
} |
|
|
|
|
|
|
|
|
|
|
|
/* Subtracts the 64-bit value formed by concatenating `b0' and `b1' from the |
|
|
|
* 64-bit value formed by concatenating `a0' and `a1'. Subtraction is modulo |
|
|
|
* 2^64, so any borrow out (carry out) is lost. The result is broken into two |
|
|
|
* 32-bit pieces which are stored at the locations pointed to by `z0Ptr' and |
|
|
|
* `z1Ptr'. |
|
|
|
*/ |
|
|
|
void |
|
|
|
__sub64(uint a0, uint a1, uint b0, uint b1, |
|
|
|
out uint z0Ptr, |
|
|
|
out uint z1Ptr) |
|
|
|
{ |
|
|
|
z1Ptr = a1 - b1; |
|
|
|
z0Ptr = a0 - b0 - uint(a1 < b1); |
|
|
|
} |
|
|
|
|
|
|
|
/* Shifts the 64-bit value formed by concatenating `a0' and `a1' right by the |
|
|
|
* number of bits given in `count'. If any nonzero bits are shifted off, they |
|
|
|
* are "jammed" into the least significant bit of the result by setting the |
|
|
|
* least significant bit to 1. The value of `count' can be arbitrarily large; |
|
|
|
* in particular, if `count' is greater than 64, the result will be either 0 |
|
|
|
* or 1, depending on whether the concatenation of `a0' and `a1' is zero or |
|
|
|
* nonzero. The result is broken into two 32-bit pieces which are stored at |
|
|
|
* the locations pointed to by `z0Ptr' and `z1Ptr'. |
|
|
|
*/ |
|
|
|
void |
|
|
|
__shift64RightJamming(uint a0, |
|
|
|
uint a1, |
|
|
|
int count, |
|
|
|
out uint z0Ptr, |
|
|
|
out uint z1Ptr) |
|
|
|
{ |
|
|
|
uint z0; |
|
|
|
uint z1; |
|
|
|
int negCount = (-count) & 31; |
|
|
|
|
|
|
|
z0 = mix(0u, a0, count == 0); |
|
|
|
z0 = mix(z0, (a0 >> count), count < 32); |
|
|
|
|
|
|
|
z1 = uint((a0 | a1) != 0u); /* count >= 64 */ |
|
|
|
uint z1_lt64 = (a0>>(count & 31)) | uint(((a0<<negCount) | a1) != 0u); |
|
|
|
z1 = mix(z1, z1_lt64, count < 64); |
|
|
|
z1 = mix(z1, (a0 | uint(a1 != 0u)), count == 32); |
|
|
|
uint z1_lt32 = (a0<<negCount) | (a1>>count) | uint ((a1<<negCount) != 0u); |
|
|
|
z1 = mix(z1, z1_lt32, count < 32); |
|
|
|
z1 = mix(z1, a1, count == 0); |
|
|
|
z1Ptr = z1; |
|
|
|
z0Ptr = z0; |
|
|
|
} |
|
|
|
|
|
|
|
/* Shifts the 96-bit value formed by concatenating `a0', `a1', and `a2' right |
|
|
|
* by 32 _plus_ the number of bits given in `count'. The shifted result is |
|
|
|
* at most 64 nonzero bits; these are broken into two 32-bit pieces which are |
|
|
|
* stored at the locations pointed to by `z0Ptr' and `z1Ptr'. The bits shifted |
|
|
|
* off form a third 32-bit result as follows: The _last_ bit shifted off is |
|
|
|
* the most-significant bit of the extra result, and the other 31 bits of the |
|
|
|
* extra result are all zero if and only if _all_but_the_last_ bits shifted off |
|
|
|
* were all zero. This extra result is stored in the location pointed to by |
|
|
|
* `z2Ptr'. The value of `count' can be arbitrarily large. |
|
|
|
* (This routine makes more sense if `a0', `a1', and `a2' are considered |
|
|
|
* to form a fixed-point value with binary point between `a1' and `a2'. This |
|
|
|
* fixed-point value is shifted right by the number of bits given in `count', |
|
|
|
* and the integer part of the result is returned at the locations pointed to |
|
|
|
* by `z0Ptr' and `z1Ptr'. The fractional part of the result may be slightly |
|
|
|
* corrupted as described above, and is returned at the location pointed to by |
|
|
|
* `z2Ptr'.) |
|
|
|
*/ |
|
|
|
void |
|
|
|
__shift64ExtraRightJamming(uint a0, uint a1, uint a2, |
|
|
|
int count, |
|
|
|
out uint z0Ptr, |
|
|
|
out uint z1Ptr, |
|
|
|
out uint z2Ptr) |
|
|
|
{ |
|
|
|
uint z0 = 0u; |
|
|
|
uint z1; |
|
|
|
uint z2; |
|
|
|
int negCount = (-count) & 31; |
|
|
|
|
|
|
|
z2 = mix(uint(a0 != 0u), a0, count == 64); |
|
|
|
z2 = mix(z2, a0 << negCount, count < 64); |
|
|
|
z2 = mix(z2, a1 << negCount, count < 32); |
|
|
|
|
|
|
|
z1 = mix(0u, (a0 >> (count & 31)), count < 64); |
|
|
|
z1 = mix(z1, (a0<<negCount) | (a1>>count), count < 32); |
|
|
|
|
|
|
|
a2 = mix(a2 | a1, a2, count < 32); |
|
|
|
z0 = mix(z0, a0 >> count, count < 32); |
|
|
|
z2 |= uint(a2 != 0u); |
|
|
|
|
|
|
|
z0 = mix(z0, 0u, (count == 32)); |
|
|
|
z1 = mix(z1, a0, (count == 32)); |
|
|
|
z2 = mix(z2, a1, (count == 32)); |
|
|
|
z0 = mix(z0, a0, (count == 0)); |
|
|
|
z1 = mix(z1, a1, (count == 0)); |
|
|
|
z2 = mix(z2, a2, (count == 0)); |
|
|
|
z2Ptr = z2; |
|
|
|
z1Ptr = z1; |
|
|
|
z0Ptr = z0; |
|
|
|
} |
|
|
|
|
|
|
|
/* Shifts the 64-bit value formed by concatenating `a0' and `a1' left by the |
|
|
|
* number of bits given in `count'. Any bits shifted off are lost. The value |
|
|
|
* of `count' must be less than 32. The result is broken into two 32-bit |
|
|
|
* pieces which are stored at the locations pointed to by `z0Ptr' and `z1Ptr'. |
|
|
|
*/ |
|
|
|
void |
|
|
|
__shortShift64Left(uint a0, uint a1, |
|
|
|
int count, |
|
|
|
out uint z0Ptr, |
|
|
|
out uint z1Ptr) |
|
|
|
{ |
|
|
|
z1Ptr = a1<<count; |
|
|
|
z0Ptr = mix((a0 << count | (a1 >> ((-count) & 31))), a0, count == 0); |
|
|
|
} |
|
|
|
|
|
|
|
/* Packs the sign `zSign', the exponent `zExp', and the significand formed by |
|
|
|
* the concatenation of `zFrac0' and `zFrac1' into a double-precision floating- |
|
|
|
* point value, returning the result. After being shifted into the proper |
|
|
|
* positions, the three fields `zSign', `zExp', and `zFrac0' are simply added |
|
|
|
* together to form the most significant 32 bits of the result. This means |
|
|
|
* that any integer portion of `zFrac0' will be added into the exponent. Since |
|
|
|
* a properly normalized significand will have an integer portion equal to 1, |
|
|
|
* the `zExp' input should be 1 less than the desired result exponent whenever |
|
|
|
* `zFrac0' and `zFrac1' concatenated form a complete, normalized significand. |
|
|
|
*/ |
|
|
|
uint64_t |
|
|
|
__packFloat64(uint zSign, int zExp, uint zFrac0, uint zFrac1) |
|
|
|
{ |
|
|
|
uvec2 z; |
|
|
|
|
|
|
|
z.y = (zSign << 31) + (uint(zExp) << 20) + zFrac0; |
|
|
|
z.x = zFrac1; |
|
|
|
return packUint2x32(z); |
|
|
|
} |
|
|
|
|
|
|
|
/* Takes an abstract floating-point value having sign `zSign', exponent `zExp', |
|
|
|
* and extended significand formed by the concatenation of `zFrac0', `zFrac1', |
|
|
|
* and `zFrac2', and returns the proper double-precision floating-point value |
|
|
|
* corresponding to the abstract input. Ordinarily, the abstract value is |
|
|
|
* simply rounded and packed into the double-precision format, with the inexact |
|
|
|
* exception raised if the abstract input cannot be represented exactly. |
|
|
|
* However, if the abstract value is too large, the overflow and inexact |
|
|
|
* exceptions are raised and an infinity or maximal finite value is returned. |
|
|
|
* If the abstract value is too small, the input value is rounded to a |
|
|
|
* subnormal number, and the underflow and inexact exceptions are raised if the |
|
|
|
* abstract input cannot be represented exactly as a subnormal double-precision |
|
|
|
* floating-point number. |
|
|
|
* The input significand must be normalized or smaller. If the input |
|
|
|
* significand is not normalized, `zExp' must be 0; in that case, the result |
|
|
|
* returned is a subnormal number, and it must not require rounding. In the |
|
|
|
* usual case that the input significand is normalized, `zExp' must be 1 less |
|
|
|
* than the "true" floating-point exponent. The handling of underflow and |
|
|
|
* overflow follows the IEEE Standard for Floating-Point Arithmetic. |
|
|
|
*/ |
|
|
|
uint64_t |
|
|
|
__roundAndPackFloat64(uint zSign, |
|
|
|
int zExp, |
|
|
|
uint zFrac0, |
|
|
|
uint zFrac1, |
|
|
|
uint zFrac2) |
|
|
|
{ |
|
|
|
bool roundNearestEven; |
|
|
|
bool increment; |
|
|
|
|
|
|
|
roundNearestEven = FLOAT_ROUNDING_MODE == FLOAT_ROUND_NEAREST_EVEN; |
|
|
|
increment = int(zFrac2) < 0; |
|
|
|
if (!roundNearestEven) { |
|
|
|
if (FLOAT_ROUNDING_MODE == FLOAT_ROUND_TO_ZERO) { |
|
|
|
increment = false; |
|
|
|
} else { |
|
|
|
if (zSign != 0u) { |
|
|
|
increment = (FLOAT_ROUNDING_MODE == FLOAT_ROUND_DOWN) && |
|
|
|
(zFrac2 != 0u); |
|
|
|
} else { |
|
|
|
increment = (FLOAT_ROUNDING_MODE == FLOAT_ROUND_UP) && |
|
|
|
(zFrac2 != 0u); |
|
|
|
} |
|
|
|
} |
|
|
|
} |
|
|
|
if (0x7FD <= zExp) { |
|
|
|
if ((0x7FD < zExp) || |
|
|
|
((zExp == 0x7FD) && |
|
|
|
(0x001FFFFFu == zFrac0 && 0xFFFFFFFFu == zFrac1) && |
|
|
|
increment)) { |
|
|
|
if ((FLOAT_ROUNDING_MODE == FLOAT_ROUND_TO_ZERO) || |
|
|
|
((zSign != 0u) && (FLOAT_ROUNDING_MODE == FLOAT_ROUND_UP)) || |
|
|
|
((zSign == 0u) && (FLOAT_ROUNDING_MODE == FLOAT_ROUND_DOWN))) { |
|
|
|
return __packFloat64(zSign, 0x7FE, 0x000FFFFFu, 0xFFFFFFFFu); |
|
|
|
} |
|
|
|
return __packFloat64(zSign, 0x7FF, 0u, 0u); |
|
|
|
} |
|
|
|
if (zExp < 0) { |
|
|
|
__shift64ExtraRightJamming( |
|
|
|
zFrac0, zFrac1, zFrac2, -zExp, zFrac0, zFrac1, zFrac2); |
|
|
|
zExp = 0; |
|
|
|
if (roundNearestEven) { |
|
|
|
increment = zFrac2 < 0u; |
|
|
|
} else { |
|
|
|
if (zSign != 0u) { |
|
|
|
increment = (FLOAT_ROUNDING_MODE == FLOAT_ROUND_DOWN) && |
|
|
|
(zFrac2 != 0u); |
|
|
|
} else { |
|
|
|
increment = (FLOAT_ROUNDING_MODE == FLOAT_ROUND_UP) && |
|
|
|
(zFrac2 != 0u); |
|
|
|
} |
|
|
|
} |
|
|
|
} |
|
|
|
} |
|
|
|
if (increment) { |
|
|
|
__add64(zFrac0, zFrac1, 0u, 1u, zFrac0, zFrac1); |
|
|
|
zFrac1 &= ~((zFrac2 + uint(zFrac2 == 0u)) & uint(roundNearestEven)); |
|
|
|
} else { |
|
|
|
zExp = mix(zExp, 0, (zFrac0 | zFrac1) == 0u); |
|
|
|
} |
|
|
|
return __packFloat64(zSign, zExp, zFrac0, zFrac1); |
|
|
|
} |
|
|
|
|
|
|
|
/* Returns the number of leading 0 bits before the most-significant 1 bit of |
|
|
|
* `a'. If `a' is zero, 32 is returned. |
|
|
|
*/ |
|
|
|
int |
|
|
|
__countLeadingZeros32(uint a) |
|
|
|
{ |
|
|
|
int shiftCount; |
|
|
|
shiftCount = mix(31 - findMSB(a), 32, a == 0u); |
|
|
|
return shiftCount; |
|
|
|
} |
|
|
|
|
|
|
|
/* Takes an abstract floating-point value having sign `zSign', exponent `zExp', |
|
|
|
* and significand formed by the concatenation of `zSig0' and `zSig1', and |
|
|
|
* returns the proper double-precision floating-point value corresponding |
|
|
|
* to the abstract input. This routine is just like `__roundAndPackFloat64' |
|
|
|
* except that the input significand has fewer bits and does not have to be |
|
|
|
* normalized. In all cases, `zExp' must be 1 less than the "true" floating- |
|
|
|
* point exponent. |
|
|
|
*/ |
|
|
|
uint64_t |
|
|
|
__normalizeRoundAndPackFloat64(uint zSign, |
|
|
|
int zExp, |
|
|
|
uint zFrac0, |
|
|
|
uint zFrac1) |
|
|
|
{ |
|
|
|
int shiftCount; |
|
|
|
uint zFrac2; |
|
|
|
|
|
|
|
if (zFrac0 == 0u) { |
|
|
|
zExp -= 32; |
|
|
|
zFrac0 = zFrac1; |
|
|
|
zFrac1 = 0u; |
|
|
|
} |
|
|
|
|
|
|
|
shiftCount = __countLeadingZeros32(zFrac0) - 11; |
|
|
|
if (0 <= shiftCount) { |
|
|
|
zFrac2 = 0u; |
|
|
|
__shortShift64Left(zFrac0, zFrac1, shiftCount, zFrac0, zFrac1); |
|
|
|
} else { |
|
|
|
__shift64ExtraRightJamming( |
|
|
|
zFrac0, zFrac1, 0u, -shiftCount, zFrac0, zFrac1, zFrac2); |
|
|
|
} |
|
|
|
zExp -= shiftCount; |
|
|
|
return __roundAndPackFloat64(zSign, zExp, zFrac0, zFrac1, zFrac2); |
|
|
|
} |
|
|
|
|
|
|
|
/* Takes two double-precision floating-point values `a' and `b', one of which |
|
|
|
* is a NaN, and returns the appropriate NaN result. |
|
|
|
*/ |
|
|
|
uint64_t |
|
|
|
__propagateFloat64NaN(uint64_t __a, uint64_t __b) |
|
|
|
{ |
|
|
|
bool aIsNaN = __is_nan(__a); |
|
|
|
bool bIsNaN = __is_nan(__b); |
|
|
|
uvec2 a = unpackUint2x32(__a); |
|
|
|
uvec2 b = unpackUint2x32(__b); |
|
|
|
a.y |= 0x00080000u; |
|
|
|
b.y |= 0x00080000u; |
|
|
|
|
|
|
|
return packUint2x32(mix(b, mix(a, b, bvec2(bIsNaN, bIsNaN)), bvec2(aIsNaN, aIsNaN))); |
|
|
|
} |
|
|
|
|
|
|
|
/* Returns the result of adding the double-precision floating-point values |
|
|
|
* `a' and `b'. The operation is performed according to the IEEE Standard for |
|
|
|
* Floating-Point Arithmetic. |
|
|
|
*/ |
|
|
|
uint64_t |
|
|
|
__fadd64(uint64_t a, uint64_t b) |
|
|
|
{ |
|
|
|
uint aSign = __extractFloat64Sign(a); |
|
|
|
uint bSign = __extractFloat64Sign(b); |
|
|
|
uint aFracLo = __extractFloat64FracLo(a); |
|
|
|
uint aFracHi = __extractFloat64FracHi(a); |
|
|
|
uint bFracLo = __extractFloat64FracLo(b); |
|
|
|
uint bFracHi = __extractFloat64FracHi(b); |
|
|
|
int aExp = __extractFloat64Exp(a); |
|
|
|
int bExp = __extractFloat64Exp(b); |
|
|
|
uint zFrac0 = 0u; |
|
|
|
uint zFrac1 = 0u; |
|
|
|
int expDiff = aExp - bExp; |
|
|
|
if (aSign == bSign) { |
|
|
|
uint zFrac2 = 0u; |
|
|
|
int zExp; |
|
|
|
bool orig_exp_diff_is_zero = (expDiff == 0); |
|
|
|
|
|
|
|
if (orig_exp_diff_is_zero) { |
|
|
|
if (aExp == 0x7FF) { |
|
|
|
bool propagate = (aFracHi | aFracLo | bFracHi | bFracLo) != 0u; |
|
|
|
return mix(a, __propagateFloat64NaN(a, b), propagate); |
|
|
|
} |
|
|
|
__add64(aFracHi, aFracLo, bFracHi, bFracLo, zFrac0, zFrac1); |
|
|
|
if (aExp == 0) |
|
|
|
return __packFloat64(aSign, 0, zFrac0, zFrac1); |
|
|
|
zFrac2 = 0u; |
|
|
|
zFrac0 |= 0x00200000u; |
|
|
|
zExp = aExp; |
|
|
|
__shift64ExtraRightJamming( |
|
|
|
zFrac0, zFrac1, zFrac2, 1, zFrac0, zFrac1, zFrac2); |
|
|
|
} else if (0 < expDiff) { |
|
|
|
if (aExp == 0x7FF) { |
|
|
|
bool propagate = (aFracHi | aFracLo) != 0u; |
|
|
|
return mix(a, __propagateFloat64NaN(a, b), propagate); |
|
|
|
} |
|
|
|
|
|
|
|
expDiff = mix(expDiff, expDiff - 1, bExp == 0); |
|
|
|
bFracHi = mix(bFracHi | 0x00100000u, bFracHi, bExp == 0); |
|
|
|
__shift64ExtraRightJamming( |
|
|
|
bFracHi, bFracLo, 0u, expDiff, bFracHi, bFracLo, zFrac2); |
|
|
|
zExp = aExp; |
|
|
|
} else if (expDiff < 0) { |
|
|
|
if (bExp == 0x7FF) { |
|
|
|
bool propagate = (bFracHi | bFracLo) != 0u; |
|
|
|
return mix(__packFloat64(aSign, 0x7ff, 0u, 0u), __propagateFloat64NaN(a, b), propagate); |
|
|
|
} |
|
|
|
expDiff = mix(expDiff, expDiff + 1, aExp == 0); |
|
|
|
aFracHi = mix(aFracHi | 0x00100000u, aFracHi, aExp == 0); |
|
|
|
__shift64ExtraRightJamming( |
|
|
|
aFracHi, aFracLo, 0u, - expDiff, aFracHi, aFracLo, zFrac2); |
|
|
|
zExp = bExp; |
|
|
|
} |
|
|
|
if (!orig_exp_diff_is_zero) { |
|
|
|
aFracHi |= 0x00100000u; |
|
|
|
__add64(aFracHi, aFracLo, bFracHi, bFracLo, zFrac0, zFrac1); |
|
|
|
--zExp; |
|
|
|
if (!(zFrac0 < 0x00200000u)) { |
|
|
|
__shift64ExtraRightJamming(zFrac0, zFrac1, zFrac2, 1, zFrac0, zFrac1, zFrac2); |
|
|
|
++zExp; |
|
|
|
} |
|
|
|
} |
|
|
|
return __roundAndPackFloat64(aSign, zExp, zFrac0, zFrac1, zFrac2); |
|
|
|
|
|
|
|
} else { |
|
|
|
int zExp; |
|
|
|
|
|
|
|
__shortShift64Left(aFracHi, aFracLo, 10, aFracHi, aFracLo); |
|
|
|
__shortShift64Left(bFracHi, bFracLo, 10, bFracHi, bFracLo); |
|
|
|
if (0 < expDiff) { |
|
|
|
if (aExp == 0x7FF) { |
|
|
|
bool propagate = (aFracHi | aFracLo) != 0u; |
|
|
|
return mix(a, __propagateFloat64NaN(a, b), propagate); |
|
|
|
} |
|
|
|
expDiff = mix(expDiff, expDiff - 1, bExp == 0); |
|
|
|
bFracHi = mix(bFracHi | 0x40000000u, bFracHi, bExp == 0); |
|
|
|
__shift64RightJamming(bFracHi, bFracLo, expDiff, bFracHi, bFracLo); |
|
|
|
aFracHi |= 0x40000000u; |
|
|
|
__sub64(aFracHi, aFracLo, bFracHi, bFracLo, zFrac0, zFrac1); |
|
|
|
zExp = aExp; |
|
|
|
--zExp; |
|
|
|
return __normalizeRoundAndPackFloat64(aSign, zExp - 10, zFrac0, zFrac1); |
|
|
|
} |
|
|
|
if (expDiff < 0) { |
|
|
|
if (bExp == 0x7FF) { |
|
|
|
bool propagate = (bFracHi | bFracLo) != 0u; |
|
|
|
return mix(__packFloat64(aSign ^ 1u, 0x7ff, 0u, 0u), __propagateFloat64NaN(a, b), propagate); |
|
|
|
} |
|
|
|
expDiff = mix(expDiff, expDiff + 1, aExp == 0); |
|
|
|
aFracHi = mix(aFracHi | 0x40000000u, aFracHi, aExp == 0); |
|
|
|
__shift64RightJamming(aFracHi, aFracLo, - expDiff, aFracHi, aFracLo); |
|
|
|
bFracHi |= 0x40000000u; |
|
|
|
__sub64(bFracHi, bFracLo, aFracHi, aFracLo, zFrac0, zFrac1); |
|
|
|
zExp = bExp; |
|
|
|
aSign ^= 1u; |
|
|
|
--zExp; |
|
|
|
return __normalizeRoundAndPackFloat64(aSign, zExp - 10, zFrac0, zFrac1); |
|
|
|
} |
|
|
|
if (aExp == 0x7FF) { |
|
|
|
bool propagate = (aFracHi | aFracLo | bFracHi | bFracLo) != 0u; |
|
|
|
return mix(0xFFFFFFFFFFFFFFFFUL, __propagateFloat64NaN(a, b), propagate); |
|
|
|
} |
|
|
|
bExp = mix(bExp, 1, aExp == 0); |
|
|
|
aExp = mix(aExp, 1, aExp == 0); |
|
|
|
bool zexp_normal = false; |
|
|
|
bool blta = true; |
|
|
|
if (bFracHi < aFracHi) { |
|
|
|
__sub64(aFracHi, aFracLo, bFracHi, bFracLo, zFrac0, zFrac1); |
|
|
|
zexp_normal = true; |
|
|
|
} |
|
|
|
else if (aFracHi < bFracHi) { |
|
|
|
__sub64(bFracHi, bFracLo, aFracHi, aFracLo, zFrac0, zFrac1); |
|
|
|
blta = false; |
|
|
|
zexp_normal = true; |
|
|
|
} |
|
|
|
else if (bFracLo < aFracLo) { |
|
|
|
__sub64(aFracHi, aFracLo, bFracHi, bFracLo, zFrac0, zFrac1); |
|
|
|
zexp_normal = true; |
|
|
|
} |
|
|
|
else if (aFracLo < bFracLo) { |
|
|
|
__sub64(bFracHi, bFracLo, aFracHi, aFracLo, zFrac0, zFrac1); |
|
|
|
blta = false; |
|
|
|
zexp_normal = true; |
|
|
|
} |
|
|
|
zExp = mix(bExp, aExp, blta); |
|
|
|
aSign = mix(aSign ^ 1u, aSign, blta); |
|
|
|
uint64_t retval_0 = __packFloat64(uint(FLOAT_ROUNDING_MODE == FLOAT_ROUND_DOWN), 0, 0u, 0u); |
|
|
|
uint64_t retval_1 = __normalizeRoundAndPackFloat64(aSign, zExp - 11, zFrac0, zFrac1); |
|
|
|
return mix(retval_0, retval_1, zexp_normal); |
|
|
|
} |
|
|
|
} |