Bladeren bron

glsl: Add "built-in" functions to do add(fp64, fp64)

v2: use mix and findMSB to optimise.
v3: [Sagar] Fix zFrac0 == 0u case in __normalizeRoundAndPackFloat64

Signed-off-by: Elie Tournier <elie.tournier@collabora.com>
tags/19.0-branchpoint
Elie Tournier 8 jaren geleden
bovenliggende
commit
f111d72596
1 gewijzigde bestanden met toevoegingen van 433 en 0 verwijderingen
  1. 433
    0
      src/compiler/glsl/float64.glsl

+ 433
- 0
src/compiler/glsl/float64.glsl Bestand weergeven

@@ -44,6 +44,7 @@
#extension GL_ARB_gpu_shader_int64 : enable
#extension GL_ARB_shader_bit_encoding : enable
#extension GL_EXT_shader_integer_mix : enable
#extension GL_MESA_shader_integer_functions : enable

#pragma warning(off)

@@ -216,3 +217,435 @@ __fge64(uint64_t a, uint64_t b)

return !__flt64_nonnan(a, b);
}

/* Adds the 64-bit value formed by concatenating `a0' and `a1' to the 64-bit
* value formed by concatenating `b0' and `b1'. Addition is modulo 2^64, so
* any carry out is lost. The result is broken into two 32-bit pieces which
* are stored at the locations pointed to by `z0Ptr' and `z1Ptr'.
*/
void
__add64(uint a0, uint a1, uint b0, uint b1,
out uint z0Ptr,
out uint z1Ptr)
{
uint z1 = a1 + b1;
z1Ptr = z1;
z0Ptr = a0 + b0 + uint(z1 < a1);
}


/* Subtracts the 64-bit value formed by concatenating `b0' and `b1' from the
* 64-bit value formed by concatenating `a0' and `a1'. Subtraction is modulo
* 2^64, so any borrow out (carry out) is lost. The result is broken into two
* 32-bit pieces which are stored at the locations pointed to by `z0Ptr' and
* `z1Ptr'.
*/
void
__sub64(uint a0, uint a1, uint b0, uint b1,
out uint z0Ptr,
out uint z1Ptr)
{
z1Ptr = a1 - b1;
z0Ptr = a0 - b0 - uint(a1 < b1);
}

/* Shifts the 64-bit value formed by concatenating `a0' and `a1' right by the
* number of bits given in `count'. If any nonzero bits are shifted off, they
* are "jammed" into the least significant bit of the result by setting the
* least significant bit to 1. The value of `count' can be arbitrarily large;
* in particular, if `count' is greater than 64, the result will be either 0
* or 1, depending on whether the concatenation of `a0' and `a1' is zero or
* nonzero. The result is broken into two 32-bit pieces which are stored at
* the locations pointed to by `z0Ptr' and `z1Ptr'.
*/
void
__shift64RightJamming(uint a0,
uint a1,
int count,
out uint z0Ptr,
out uint z1Ptr)
{
uint z0;
uint z1;
int negCount = (-count) & 31;

z0 = mix(0u, a0, count == 0);
z0 = mix(z0, (a0 >> count), count < 32);

z1 = uint((a0 | a1) != 0u); /* count >= 64 */
uint z1_lt64 = (a0>>(count & 31)) | uint(((a0<<negCount) | a1) != 0u);
z1 = mix(z1, z1_lt64, count < 64);
z1 = mix(z1, (a0 | uint(a1 != 0u)), count == 32);
uint z1_lt32 = (a0<<negCount) | (a1>>count) | uint ((a1<<negCount) != 0u);
z1 = mix(z1, z1_lt32, count < 32);
z1 = mix(z1, a1, count == 0);
z1Ptr = z1;
z0Ptr = z0;
}

/* Shifts the 96-bit value formed by concatenating `a0', `a1', and `a2' right
* by 32 _plus_ the number of bits given in `count'. The shifted result is
* at most 64 nonzero bits; these are broken into two 32-bit pieces which are
* stored at the locations pointed to by `z0Ptr' and `z1Ptr'. The bits shifted
* off form a third 32-bit result as follows: The _last_ bit shifted off is
* the most-significant bit of the extra result, and the other 31 bits of the
* extra result are all zero if and only if _all_but_the_last_ bits shifted off
* were all zero. This extra result is stored in the location pointed to by
* `z2Ptr'. The value of `count' can be arbitrarily large.
* (This routine makes more sense if `a0', `a1', and `a2' are considered
* to form a fixed-point value with binary point between `a1' and `a2'. This
* fixed-point value is shifted right by the number of bits given in `count',
* and the integer part of the result is returned at the locations pointed to
* by `z0Ptr' and `z1Ptr'. The fractional part of the result may be slightly
* corrupted as described above, and is returned at the location pointed to by
* `z2Ptr'.)
*/
void
__shift64ExtraRightJamming(uint a0, uint a1, uint a2,
int count,
out uint z0Ptr,
out uint z1Ptr,
out uint z2Ptr)
{
uint z0 = 0u;
uint z1;
uint z2;
int negCount = (-count) & 31;

z2 = mix(uint(a0 != 0u), a0, count == 64);
z2 = mix(z2, a0 << negCount, count < 64);
z2 = mix(z2, a1 << negCount, count < 32);

z1 = mix(0u, (a0 >> (count & 31)), count < 64);
z1 = mix(z1, (a0<<negCount) | (a1>>count), count < 32);

a2 = mix(a2 | a1, a2, count < 32);
z0 = mix(z0, a0 >> count, count < 32);
z2 |= uint(a2 != 0u);

z0 = mix(z0, 0u, (count == 32));
z1 = mix(z1, a0, (count == 32));
z2 = mix(z2, a1, (count == 32));
z0 = mix(z0, a0, (count == 0));
z1 = mix(z1, a1, (count == 0));
z2 = mix(z2, a2, (count == 0));
z2Ptr = z2;
z1Ptr = z1;
z0Ptr = z0;
}

/* Shifts the 64-bit value formed by concatenating `a0' and `a1' left by the
* number of bits given in `count'. Any bits shifted off are lost. The value
* of `count' must be less than 32. The result is broken into two 32-bit
* pieces which are stored at the locations pointed to by `z0Ptr' and `z1Ptr'.
*/
void
__shortShift64Left(uint a0, uint a1,
int count,
out uint z0Ptr,
out uint z1Ptr)
{
z1Ptr = a1<<count;
z0Ptr = mix((a0 << count | (a1 >> ((-count) & 31))), a0, count == 0);
}

/* Packs the sign `zSign', the exponent `zExp', and the significand formed by
* the concatenation of `zFrac0' and `zFrac1' into a double-precision floating-
* point value, returning the result. After being shifted into the proper
* positions, the three fields `zSign', `zExp', and `zFrac0' are simply added
* together to form the most significant 32 bits of the result. This means
* that any integer portion of `zFrac0' will be added into the exponent. Since
* a properly normalized significand will have an integer portion equal to 1,
* the `zExp' input should be 1 less than the desired result exponent whenever
* `zFrac0' and `zFrac1' concatenated form a complete, normalized significand.
*/
uint64_t
__packFloat64(uint zSign, int zExp, uint zFrac0, uint zFrac1)
{
uvec2 z;

z.y = (zSign << 31) + (uint(zExp) << 20) + zFrac0;
z.x = zFrac1;
return packUint2x32(z);
}

/* Takes an abstract floating-point value having sign `zSign', exponent `zExp',
* and extended significand formed by the concatenation of `zFrac0', `zFrac1',
* and `zFrac2', and returns the proper double-precision floating-point value
* corresponding to the abstract input. Ordinarily, the abstract value is
* simply rounded and packed into the double-precision format, with the inexact
* exception raised if the abstract input cannot be represented exactly.
* However, if the abstract value is too large, the overflow and inexact
* exceptions are raised and an infinity or maximal finite value is returned.
* If the abstract value is too small, the input value is rounded to a
* subnormal number, and the underflow and inexact exceptions are raised if the
* abstract input cannot be represented exactly as a subnormal double-precision
* floating-point number.
* The input significand must be normalized or smaller. If the input
* significand is not normalized, `zExp' must be 0; in that case, the result
* returned is a subnormal number, and it must not require rounding. In the
* usual case that the input significand is normalized, `zExp' must be 1 less
* than the "true" floating-point exponent. The handling of underflow and
* overflow follows the IEEE Standard for Floating-Point Arithmetic.
*/
uint64_t
__roundAndPackFloat64(uint zSign,
int zExp,
uint zFrac0,
uint zFrac1,
uint zFrac2)
{
bool roundNearestEven;
bool increment;

roundNearestEven = FLOAT_ROUNDING_MODE == FLOAT_ROUND_NEAREST_EVEN;
increment = int(zFrac2) < 0;
if (!roundNearestEven) {
if (FLOAT_ROUNDING_MODE == FLOAT_ROUND_TO_ZERO) {
increment = false;
} else {
if (zSign != 0u) {
increment = (FLOAT_ROUNDING_MODE == FLOAT_ROUND_DOWN) &&
(zFrac2 != 0u);
} else {
increment = (FLOAT_ROUNDING_MODE == FLOAT_ROUND_UP) &&
(zFrac2 != 0u);
}
}
}
if (0x7FD <= zExp) {
if ((0x7FD < zExp) ||
((zExp == 0x7FD) &&
(0x001FFFFFu == zFrac0 && 0xFFFFFFFFu == zFrac1) &&
increment)) {
if ((FLOAT_ROUNDING_MODE == FLOAT_ROUND_TO_ZERO) ||
((zSign != 0u) && (FLOAT_ROUNDING_MODE == FLOAT_ROUND_UP)) ||
((zSign == 0u) && (FLOAT_ROUNDING_MODE == FLOAT_ROUND_DOWN))) {
return __packFloat64(zSign, 0x7FE, 0x000FFFFFu, 0xFFFFFFFFu);
}
return __packFloat64(zSign, 0x7FF, 0u, 0u);
}
if (zExp < 0) {
__shift64ExtraRightJamming(
zFrac0, zFrac1, zFrac2, -zExp, zFrac0, zFrac1, zFrac2);
zExp = 0;
if (roundNearestEven) {
increment = zFrac2 < 0u;
} else {
if (zSign != 0u) {
increment = (FLOAT_ROUNDING_MODE == FLOAT_ROUND_DOWN) &&
(zFrac2 != 0u);
} else {
increment = (FLOAT_ROUNDING_MODE == FLOAT_ROUND_UP) &&
(zFrac2 != 0u);
}
}
}
}
if (increment) {
__add64(zFrac0, zFrac1, 0u, 1u, zFrac0, zFrac1);
zFrac1 &= ~((zFrac2 + uint(zFrac2 == 0u)) & uint(roundNearestEven));
} else {
zExp = mix(zExp, 0, (zFrac0 | zFrac1) == 0u);
}
return __packFloat64(zSign, zExp, zFrac0, zFrac1);
}

/* Returns the number of leading 0 bits before the most-significant 1 bit of
* `a'. If `a' is zero, 32 is returned.
*/
int
__countLeadingZeros32(uint a)
{
int shiftCount;
shiftCount = mix(31 - findMSB(a), 32, a == 0u);
return shiftCount;
}

/* Takes an abstract floating-point value having sign `zSign', exponent `zExp',
* and significand formed by the concatenation of `zSig0' and `zSig1', and
* returns the proper double-precision floating-point value corresponding
* to the abstract input. This routine is just like `__roundAndPackFloat64'
* except that the input significand has fewer bits and does not have to be
* normalized. In all cases, `zExp' must be 1 less than the "true" floating-
* point exponent.
*/
uint64_t
__normalizeRoundAndPackFloat64(uint zSign,
int zExp,
uint zFrac0,
uint zFrac1)
{
int shiftCount;
uint zFrac2;

if (zFrac0 == 0u) {
zExp -= 32;
zFrac0 = zFrac1;
zFrac1 = 0u;
}

shiftCount = __countLeadingZeros32(zFrac0) - 11;
if (0 <= shiftCount) {
zFrac2 = 0u;
__shortShift64Left(zFrac0, zFrac1, shiftCount, zFrac0, zFrac1);
} else {
__shift64ExtraRightJamming(
zFrac0, zFrac1, 0u, -shiftCount, zFrac0, zFrac1, zFrac2);
}
zExp -= shiftCount;
return __roundAndPackFloat64(zSign, zExp, zFrac0, zFrac1, zFrac2);
}

/* Takes two double-precision floating-point values `a' and `b', one of which
* is a NaN, and returns the appropriate NaN result.
*/
uint64_t
__propagateFloat64NaN(uint64_t __a, uint64_t __b)
{
bool aIsNaN = __is_nan(__a);
bool bIsNaN = __is_nan(__b);
uvec2 a = unpackUint2x32(__a);
uvec2 b = unpackUint2x32(__b);
a.y |= 0x00080000u;
b.y |= 0x00080000u;

return packUint2x32(mix(b, mix(a, b, bvec2(bIsNaN, bIsNaN)), bvec2(aIsNaN, aIsNaN)));
}

/* Returns the result of adding the double-precision floating-point values
* `a' and `b'. The operation is performed according to the IEEE Standard for
* Floating-Point Arithmetic.
*/
uint64_t
__fadd64(uint64_t a, uint64_t b)
{
uint aSign = __extractFloat64Sign(a);
uint bSign = __extractFloat64Sign(b);
uint aFracLo = __extractFloat64FracLo(a);
uint aFracHi = __extractFloat64FracHi(a);
uint bFracLo = __extractFloat64FracLo(b);
uint bFracHi = __extractFloat64FracHi(b);
int aExp = __extractFloat64Exp(a);
int bExp = __extractFloat64Exp(b);
uint zFrac0 = 0u;
uint zFrac1 = 0u;
int expDiff = aExp - bExp;
if (aSign == bSign) {
uint zFrac2 = 0u;
int zExp;
bool orig_exp_diff_is_zero = (expDiff == 0);

if (orig_exp_diff_is_zero) {
if (aExp == 0x7FF) {
bool propagate = (aFracHi | aFracLo | bFracHi | bFracLo) != 0u;
return mix(a, __propagateFloat64NaN(a, b), propagate);
}
__add64(aFracHi, aFracLo, bFracHi, bFracLo, zFrac0, zFrac1);
if (aExp == 0)
return __packFloat64(aSign, 0, zFrac0, zFrac1);
zFrac2 = 0u;
zFrac0 |= 0x00200000u;
zExp = aExp;
__shift64ExtraRightJamming(
zFrac0, zFrac1, zFrac2, 1, zFrac0, zFrac1, zFrac2);
} else if (0 < expDiff) {
if (aExp == 0x7FF) {
bool propagate = (aFracHi | aFracLo) != 0u;
return mix(a, __propagateFloat64NaN(a, b), propagate);
}

expDiff = mix(expDiff, expDiff - 1, bExp == 0);
bFracHi = mix(bFracHi | 0x00100000u, bFracHi, bExp == 0);
__shift64ExtraRightJamming(
bFracHi, bFracLo, 0u, expDiff, bFracHi, bFracLo, zFrac2);
zExp = aExp;
} else if (expDiff < 0) {
if (bExp == 0x7FF) {
bool propagate = (bFracHi | bFracLo) != 0u;
return mix(__packFloat64(aSign, 0x7ff, 0u, 0u), __propagateFloat64NaN(a, b), propagate);
}
expDiff = mix(expDiff, expDiff + 1, aExp == 0);
aFracHi = mix(aFracHi | 0x00100000u, aFracHi, aExp == 0);
__shift64ExtraRightJamming(
aFracHi, aFracLo, 0u, - expDiff, aFracHi, aFracLo, zFrac2);
zExp = bExp;
}
if (!orig_exp_diff_is_zero) {
aFracHi |= 0x00100000u;
__add64(aFracHi, aFracLo, bFracHi, bFracLo, zFrac0, zFrac1);
--zExp;
if (!(zFrac0 < 0x00200000u)) {
__shift64ExtraRightJamming(zFrac0, zFrac1, zFrac2, 1, zFrac0, zFrac1, zFrac2);
++zExp;
}
}
return __roundAndPackFloat64(aSign, zExp, zFrac0, zFrac1, zFrac2);

} else {
int zExp;

__shortShift64Left(aFracHi, aFracLo, 10, aFracHi, aFracLo);
__shortShift64Left(bFracHi, bFracLo, 10, bFracHi, bFracLo);
if (0 < expDiff) {
if (aExp == 0x7FF) {
bool propagate = (aFracHi | aFracLo) != 0u;
return mix(a, __propagateFloat64NaN(a, b), propagate);
}
expDiff = mix(expDiff, expDiff - 1, bExp == 0);
bFracHi = mix(bFracHi | 0x40000000u, bFracHi, bExp == 0);
__shift64RightJamming(bFracHi, bFracLo, expDiff, bFracHi, bFracLo);
aFracHi |= 0x40000000u;
__sub64(aFracHi, aFracLo, bFracHi, bFracLo, zFrac0, zFrac1);
zExp = aExp;
--zExp;
return __normalizeRoundAndPackFloat64(aSign, zExp - 10, zFrac0, zFrac1);
}
if (expDiff < 0) {
if (bExp == 0x7FF) {
bool propagate = (bFracHi | bFracLo) != 0u;
return mix(__packFloat64(aSign ^ 1u, 0x7ff, 0u, 0u), __propagateFloat64NaN(a, b), propagate);
}
expDiff = mix(expDiff, expDiff + 1, aExp == 0);
aFracHi = mix(aFracHi | 0x40000000u, aFracHi, aExp == 0);
__shift64RightJamming(aFracHi, aFracLo, - expDiff, aFracHi, aFracLo);
bFracHi |= 0x40000000u;
__sub64(bFracHi, bFracLo, aFracHi, aFracLo, zFrac0, zFrac1);
zExp = bExp;
aSign ^= 1u;
--zExp;
return __normalizeRoundAndPackFloat64(aSign, zExp - 10, zFrac0, zFrac1);
}
if (aExp == 0x7FF) {
bool propagate = (aFracHi | aFracLo | bFracHi | bFracLo) != 0u;
return mix(0xFFFFFFFFFFFFFFFFUL, __propagateFloat64NaN(a, b), propagate);
}
bExp = mix(bExp, 1, aExp == 0);
aExp = mix(aExp, 1, aExp == 0);
bool zexp_normal = false;
bool blta = true;
if (bFracHi < aFracHi) {
__sub64(aFracHi, aFracLo, bFracHi, bFracLo, zFrac0, zFrac1);
zexp_normal = true;
}
else if (aFracHi < bFracHi) {
__sub64(bFracHi, bFracLo, aFracHi, aFracLo, zFrac0, zFrac1);
blta = false;
zexp_normal = true;
}
else if (bFracLo < aFracLo) {
__sub64(aFracHi, aFracLo, bFracHi, bFracLo, zFrac0, zFrac1);
zexp_normal = true;
}
else if (aFracLo < bFracLo) {
__sub64(bFracHi, bFracLo, aFracHi, aFracLo, zFrac0, zFrac1);
blta = false;
zexp_normal = true;
}
zExp = mix(bExp, aExp, blta);
aSign = mix(aSign ^ 1u, aSign, blta);
uint64_t retval_0 = __packFloat64(uint(FLOAT_ROUNDING_MODE == FLOAT_ROUND_DOWN), 0, 0u, 0u);
uint64_t retval_1 = __normalizeRoundAndPackFloat64(aSign, zExp - 11, zFrac0, zFrac1);
return mix(retval_0, retval_1, zexp_normal);
}
}

Laden…
Annuleren
Opslaan