|
|
|
@@ -134,6 +134,9 @@ struct ra_node { |
|
|
|
|
|
|
|
unsigned int class; |
|
|
|
|
|
|
|
/* Client-assigned register, if assigned, or NO_REG. */ |
|
|
|
unsigned int forced_reg; |
|
|
|
|
|
|
|
/* Register, if assigned, or NO_REG. */ |
|
|
|
unsigned int reg; |
|
|
|
|
|
|
|
@@ -147,6 +150,15 @@ struct ra_node { |
|
|
|
* approximate cost of spilling this node. |
|
|
|
*/ |
|
|
|
float spill_cost; |
|
|
|
|
|
|
|
/* Temporary data for the algorithm to scratch around in */ |
|
|
|
struct { |
|
|
|
/** |
|
|
|
* Temporary version of q_total which we decrement as things are placed |
|
|
|
* into the stack. |
|
|
|
*/ |
|
|
|
unsigned int q_total; |
|
|
|
} tmp; |
|
|
|
}; |
|
|
|
|
|
|
|
struct ra_graph { |
|
|
|
@@ -159,36 +171,39 @@ struct ra_graph { |
|
|
|
|
|
|
|
unsigned int alloc; /**< count of nodes allocated. */ |
|
|
|
|
|
|
|
unsigned int *stack; |
|
|
|
unsigned int stack_count; |
|
|
|
unsigned int (*select_reg_callback)(struct ra_graph *g, BITSET_WORD *regs, |
|
|
|
void *data); |
|
|
|
void *select_reg_callback_data; |
|
|
|
|
|
|
|
/** Bit-set indicating, for each register, if it's in the stack */ |
|
|
|
BITSET_WORD *in_stack; |
|
|
|
/* Temporary data for the algorithm to scratch around in */ |
|
|
|
struct { |
|
|
|
unsigned int *stack; |
|
|
|
unsigned int stack_count; |
|
|
|
|
|
|
|
/** Bit-set indicating, for each register, if it pre-assigned */ |
|
|
|
BITSET_WORD *reg_assigned; |
|
|
|
/** Bit-set indicating, for each register, if it's in the stack */ |
|
|
|
BITSET_WORD *in_stack; |
|
|
|
|
|
|
|
/** Bit-set indicating, for each register, the value of the pq test */ |
|
|
|
BITSET_WORD *pq_test; |
|
|
|
/** Bit-set indicating, for each register, if it pre-assigned */ |
|
|
|
BITSET_WORD *reg_assigned; |
|
|
|
|
|
|
|
/** For each BITSET_WORD, the minimum q value or ~0 if unknown */ |
|
|
|
unsigned int *min_q_total; |
|
|
|
/** Bit-set indicating, for each register, the value of the pq test */ |
|
|
|
BITSET_WORD *pq_test; |
|
|
|
|
|
|
|
/* |
|
|
|
* * For each BITSET_WORD, the node with the minimum q_total if |
|
|
|
* min_q_total[i] != ~0. |
|
|
|
*/ |
|
|
|
unsigned int *min_q_node; |
|
|
|
/** For each BITSET_WORD, the minimum q value or ~0 if unknown */ |
|
|
|
unsigned int *min_q_total; |
|
|
|
|
|
|
|
/** |
|
|
|
* Tracks the start of the set of optimistically-colored registers in the |
|
|
|
* stack. |
|
|
|
*/ |
|
|
|
unsigned int stack_optimistic_start; |
|
|
|
/* |
|
|
|
* * For each BITSET_WORD, the node with the minimum q_total if |
|
|
|
* min_q_total[i] != ~0. |
|
|
|
*/ |
|
|
|
unsigned int *min_q_node; |
|
|
|
|
|
|
|
unsigned int (*select_reg_callback)(struct ra_graph *g, BITSET_WORD *regs, |
|
|
|
void *data); |
|
|
|
void *select_reg_callback_data; |
|
|
|
/** |
|
|
|
* Tracks the start of the set of optimistically-colored registers in the |
|
|
|
* stack. |
|
|
|
*/ |
|
|
|
unsigned int stack_optimistic_start; |
|
|
|
} tmp; |
|
|
|
}; |
|
|
|
|
|
|
|
/** |
|
|
|
@@ -483,21 +498,23 @@ ra_realloc_interference_graph(struct ra_graph *g, unsigned int alloc) |
|
|
|
g->nodes[i].adjacency_count = 0; |
|
|
|
g->nodes[i].q_total = 0; |
|
|
|
|
|
|
|
g->nodes[i].forced_reg = NO_REG; |
|
|
|
g->nodes[i].reg = NO_REG; |
|
|
|
} |
|
|
|
|
|
|
|
g->stack = reralloc(g, g->stack, unsigned int, alloc); |
|
|
|
g->in_stack = rerzalloc(g, g->in_stack, BITSET_WORD, |
|
|
|
g_bitset_count, bitset_count); |
|
|
|
/* These are scratch values and don't need to be zeroed. We'll clear them |
|
|
|
* as part of ra_select() setup. |
|
|
|
*/ |
|
|
|
g->tmp.stack = reralloc(g, g->tmp.stack, unsigned int, alloc); |
|
|
|
g->tmp.in_stack = reralloc(g, g->tmp.in_stack, BITSET_WORD, bitset_count); |
|
|
|
|
|
|
|
g->reg_assigned = rerzalloc(g, g->reg_assigned, BITSET_WORD, |
|
|
|
g_bitset_count, bitset_count); |
|
|
|
g->pq_test = rerzalloc(g, g->pq_test, BITSET_WORD, |
|
|
|
g_bitset_count, bitset_count); |
|
|
|
g->min_q_total = rerzalloc(g, g->min_q_total, unsigned int, |
|
|
|
g_bitset_count, bitset_count); |
|
|
|
g->min_q_node = rerzalloc(g, g->min_q_node, unsigned int, |
|
|
|
g_bitset_count, bitset_count); |
|
|
|
g->tmp.reg_assigned = reralloc(g, g->tmp.reg_assigned, BITSET_WORD, |
|
|
|
bitset_count); |
|
|
|
g->tmp.pq_test = reralloc(g, g->tmp.pq_test, BITSET_WORD, bitset_count); |
|
|
|
g->tmp.min_q_total = reralloc(g, g->tmp.min_q_total, unsigned int, |
|
|
|
bitset_count); |
|
|
|
g->tmp.min_q_node = reralloc(g, g->tmp.min_q_node, unsigned int, |
|
|
|
bitset_count); |
|
|
|
|
|
|
|
g->alloc = alloc; |
|
|
|
} |
|
|
|
@@ -577,20 +594,20 @@ update_pq_info(struct ra_graph *g, unsigned int n) |
|
|
|
{ |
|
|
|
int i = n / BITSET_WORDBITS; |
|
|
|
int n_class = g->nodes[n].class; |
|
|
|
if (g->nodes[n].q_total < g->regs->classes[n_class]->p) { |
|
|
|
BITSET_SET(g->pq_test, n); |
|
|
|
} else if (g->min_q_total[i] != UINT_MAX) { |
|
|
|
if (g->nodes[n].tmp.q_total < g->regs->classes[n_class]->p) { |
|
|
|
BITSET_SET(g->tmp.pq_test, n); |
|
|
|
} else if (g->tmp.min_q_total[i] != UINT_MAX) { |
|
|
|
/* Only update min_q_total and min_q_node if min_q_total != UINT_MAX so |
|
|
|
* that we don't update while we have stale data and accidentally mark |
|
|
|
* it as non-stale. Also, in order to remain consistent with the old |
|
|
|
* naive implementation of the algorithm, we do a lexicographical sort |
|
|
|
* to ensure that we always choose the node with the highest node index. |
|
|
|
*/ |
|
|
|
if (g->nodes[n].q_total < g->min_q_total[i] || |
|
|
|
(g->nodes[n].q_total == g->min_q_total[i] && |
|
|
|
n > g->min_q_node[i])) { |
|
|
|
g->min_q_total[i] = g->nodes[n].q_total; |
|
|
|
g->min_q_node[i] = n; |
|
|
|
if (g->nodes[n].tmp.q_total < g->tmp.min_q_total[i] || |
|
|
|
(g->nodes[n].tmp.q_total == g->tmp.min_q_total[i] && |
|
|
|
n > g->tmp.min_q_node[i])) { |
|
|
|
g->tmp.min_q_total[i] = g->nodes[n].tmp.q_total; |
|
|
|
g->tmp.min_q_node[i] = n; |
|
|
|
} |
|
|
|
} |
|
|
|
} |
|
|
|
@@ -601,25 +618,26 @@ add_node_to_stack(struct ra_graph *g, unsigned int n) |
|
|
|
unsigned int i; |
|
|
|
int n_class = g->nodes[n].class; |
|
|
|
|
|
|
|
assert(!BITSET_TEST(g->in_stack, n)); |
|
|
|
assert(!BITSET_TEST(g->tmp.in_stack, n)); |
|
|
|
|
|
|
|
for (i = 0; i < g->nodes[n].adjacency_count; i++) { |
|
|
|
unsigned int n2 = g->nodes[n].adjacency_list[i]; |
|
|
|
unsigned int n2_class = g->nodes[n2].class; |
|
|
|
|
|
|
|
if (!BITSET_TEST(g->in_stack, n2) && !BITSET_TEST(g->reg_assigned, n2)) { |
|
|
|
assert(g->nodes[n2].q_total >= g->regs->classes[n2_class]->q[n_class]); |
|
|
|
g->nodes[n2].q_total -= g->regs->classes[n2_class]->q[n_class]; |
|
|
|
if (!BITSET_TEST(g->tmp.in_stack, n2) && |
|
|
|
!BITSET_TEST(g->tmp.reg_assigned, n2)) { |
|
|
|
assert(g->nodes[n2].tmp.q_total >= g->regs->classes[n2_class]->q[n_class]); |
|
|
|
g->nodes[n2].tmp.q_total -= g->regs->classes[n2_class]->q[n_class]; |
|
|
|
update_pq_info(g, n2); |
|
|
|
} |
|
|
|
} |
|
|
|
|
|
|
|
g->stack[g->stack_count] = n; |
|
|
|
g->stack_count++; |
|
|
|
BITSET_SET(g->in_stack, n); |
|
|
|
g->tmp.stack[g->tmp.stack_count] = n; |
|
|
|
g->tmp.stack_count++; |
|
|
|
BITSET_SET(g->tmp.in_stack, n); |
|
|
|
|
|
|
|
/* Flag the min_q_total for n's block as dirty so it gets recalculated */ |
|
|
|
g->min_q_total[n / BITSET_WORDBITS] = UINT_MAX; |
|
|
|
g->tmp.min_q_total[n / BITSET_WORDBITS] = UINT_MAX; |
|
|
|
} |
|
|
|
|
|
|
|
/** |
|
|
|
@@ -644,14 +662,20 @@ ra_simplify(struct ra_graph *g) |
|
|
|
const unsigned int top_word_high_bit = (g->count - 1) % BITSET_WORDBITS; |
|
|
|
|
|
|
|
/* Do a quick pre-pass to set things up */ |
|
|
|
g->tmp.stack_count = 0; |
|
|
|
for (int i = BITSET_WORDS(g->count) - 1, high_bit = top_word_high_bit; |
|
|
|
i >= 0; i--, high_bit = BITSET_WORDBITS - 1) { |
|
|
|
g->min_q_total[i] = UINT_MAX; |
|
|
|
g->min_q_node[i] = UINT_MAX; |
|
|
|
g->tmp.in_stack[i] = 0; |
|
|
|
g->tmp.reg_assigned[i] = 0; |
|
|
|
g->tmp.pq_test[i] = 0; |
|
|
|
g->tmp.min_q_total[i] = UINT_MAX; |
|
|
|
g->tmp.min_q_node[i] = UINT_MAX; |
|
|
|
for (int j = high_bit; j >= 0; j--) { |
|
|
|
unsigned int n = i * BITSET_WORDBITS + j; |
|
|
|
g->nodes[n].reg = g->nodes[n].forced_reg; |
|
|
|
g->nodes[n].tmp.q_total = g->nodes[n].q_total; |
|
|
|
if (g->nodes[n].reg != NO_REG) |
|
|
|
g->reg_assigned[i] |= BITSET_BIT(j); |
|
|
|
g->tmp.reg_assigned[i] |= BITSET_BIT(j); |
|
|
|
update_pq_info(g, n); |
|
|
|
} |
|
|
|
} |
|
|
|
@@ -666,11 +690,11 @@ ra_simplify(struct ra_graph *g) |
|
|
|
i >= 0; i--, high_bit = BITSET_WORDBITS - 1) { |
|
|
|
BITSET_WORD mask = ~(BITSET_WORD)0 >> (31 - high_bit); |
|
|
|
|
|
|
|
BITSET_WORD skip = g->in_stack[i] | g->reg_assigned[i]; |
|
|
|
BITSET_WORD skip = g->tmp.in_stack[i] | g->tmp.reg_assigned[i]; |
|
|
|
if (skip == mask) |
|
|
|
continue; |
|
|
|
|
|
|
|
BITSET_WORD pq = g->pq_test[i] & ~skip; |
|
|
|
BITSET_WORD pq = g->tmp.pq_test[i] & ~skip; |
|
|
|
if (pq) { |
|
|
|
/* In this case, we have stuff we can immediately take off the |
|
|
|
* stack. This also means that we're guaranteed to make progress |
|
|
|
@@ -686,12 +710,12 @@ ra_simplify(struct ra_graph *g) |
|
|
|
/* add_node_to_stack() may update pq_test for this word so |
|
|
|
* we need to update our local copy. |
|
|
|
*/ |
|
|
|
pq = g->pq_test[i] & ~skip; |
|
|
|
pq = g->tmp.pq_test[i] & ~skip; |
|
|
|
progress = true; |
|
|
|
} |
|
|
|
} |
|
|
|
} else if (!progress) { |
|
|
|
if (g->min_q_total[i] == UINT_MAX) { |
|
|
|
if (g->tmp.min_q_total[i] == UINT_MAX) { |
|
|
|
/* The min_q_total and min_q_node are dirty because we added |
|
|
|
* one of these nodes to the stack. It needs to be |
|
|
|
* recalculated. |
|
|
|
@@ -702,29 +726,29 @@ ra_simplify(struct ra_graph *g) |
|
|
|
|
|
|
|
unsigned int n = i * BITSET_WORDBITS + j; |
|
|
|
assert(n < g->count); |
|
|
|
if (g->nodes[n].q_total < g->min_q_total[i]) { |
|
|
|
g->min_q_total[i] = g->nodes[n].q_total; |
|
|
|
g->min_q_node[i] = n; |
|
|
|
if (g->nodes[n].tmp.q_total < g->tmp.min_q_total[i]) { |
|
|
|
g->tmp.min_q_total[i] = g->nodes[n].tmp.q_total; |
|
|
|
g->tmp.min_q_node[i] = n; |
|
|
|
} |
|
|
|
} |
|
|
|
} |
|
|
|
if (g->min_q_total[i] < min_q_total) { |
|
|
|
min_q_node = g->min_q_node[i]; |
|
|
|
min_q_total = g->min_q_total[i]; |
|
|
|
if (g->tmp.min_q_total[i] < min_q_total) { |
|
|
|
min_q_node = g->tmp.min_q_node[i]; |
|
|
|
min_q_total = g->tmp.min_q_total[i]; |
|
|
|
} |
|
|
|
} |
|
|
|
} |
|
|
|
|
|
|
|
if (!progress && min_q_total != UINT_MAX) { |
|
|
|
if (stack_optimistic_start == UINT_MAX) |
|
|
|
stack_optimistic_start = g->stack_count; |
|
|
|
stack_optimistic_start = g->tmp.stack_count; |
|
|
|
|
|
|
|
add_node_to_stack(g, min_q_node); |
|
|
|
progress = true; |
|
|
|
} |
|
|
|
} |
|
|
|
|
|
|
|
g->stack_optimistic_start = stack_optimistic_start; |
|
|
|
g->tmp.stack_optimistic_start = stack_optimistic_start; |
|
|
|
} |
|
|
|
|
|
|
|
static bool |
|
|
|
@@ -735,7 +759,7 @@ ra_any_neighbors_conflict(struct ra_graph *g, unsigned int n, unsigned int r) |
|
|
|
for (i = 0; i < g->nodes[n].adjacency_count; i++) { |
|
|
|
unsigned int n2 = g->nodes[n].adjacency_list[i]; |
|
|
|
|
|
|
|
if (!BITSET_TEST(g->in_stack, n2) && |
|
|
|
if (!BITSET_TEST(g->tmp.in_stack, n2) && |
|
|
|
BITSET_TEST(g->regs->regs[r].conflicts, g->nodes[n2].reg)) { |
|
|
|
return true; |
|
|
|
} |
|
|
|
@@ -765,7 +789,7 @@ ra_compute_available_regs(struct ra_graph *g, unsigned int n, BITSET_WORD *regs) |
|
|
|
unsigned int n2 = g->nodes[n].adjacency_list[i]; |
|
|
|
unsigned int r = g->nodes[n2].reg; |
|
|
|
|
|
|
|
if (!BITSET_TEST(g->in_stack, n2)) { |
|
|
|
if (!BITSET_TEST(g->tmp.in_stack, n2)) { |
|
|
|
for (int j = 0; j < BITSET_WORDS(g->regs->count); j++) |
|
|
|
regs[j] &= ~g->regs->regs[r].conflicts[j]; |
|
|
|
} |
|
|
|
@@ -795,16 +819,16 @@ ra_select(struct ra_graph *g) |
|
|
|
if (g->select_reg_callback) |
|
|
|
select_regs = malloc(BITSET_WORDS(g->regs->count) * sizeof(BITSET_WORD)); |
|
|
|
|
|
|
|
while (g->stack_count != 0) { |
|
|
|
while (g->tmp.stack_count != 0) { |
|
|
|
unsigned int ri; |
|
|
|
unsigned int r = -1; |
|
|
|
int n = g->stack[g->stack_count - 1]; |
|
|
|
int n = g->tmp.stack[g->tmp.stack_count - 1]; |
|
|
|
struct ra_class *c = g->regs->classes[g->nodes[n].class]; |
|
|
|
|
|
|
|
/* set this to false even if we return here so that |
|
|
|
* ra_get_best_spill_node() considers this node later. |
|
|
|
*/ |
|
|
|
BITSET_CLEAR(g->in_stack, n); |
|
|
|
BITSET_CLEAR(g->tmp.in_stack, n); |
|
|
|
|
|
|
|
if (g->select_reg_callback) { |
|
|
|
if (!ra_compute_available_regs(g, n, select_regs)) { |
|
|
|
@@ -831,7 +855,7 @@ ra_select(struct ra_graph *g) |
|
|
|
} |
|
|
|
|
|
|
|
g->nodes[n].reg = r; |
|
|
|
g->stack_count--; |
|
|
|
g->tmp.stack_count--; |
|
|
|
|
|
|
|
/* Rotate the starting point except for any nodes above the lowest |
|
|
|
* optimistically colorable node. The likelihood that we will succeed |
|
|
|
@@ -843,7 +867,7 @@ ra_select(struct ra_graph *g) |
|
|
|
* dense packing strategy. |
|
|
|
*/ |
|
|
|
if (g->regs->round_robin && |
|
|
|
g->stack_count - 1 <= g->stack_optimistic_start) |
|
|
|
g->tmp.stack_count - 1 <= g->tmp.stack_optimistic_start) |
|
|
|
start_search_reg = r + 1; |
|
|
|
} |
|
|
|
|
|
|
|
@@ -862,7 +886,10 @@ ra_allocate(struct ra_graph *g) |
|
|
|
unsigned int |
|
|
|
ra_get_node_reg(struct ra_graph *g, unsigned int n) |
|
|
|
{ |
|
|
|
return g->nodes[n].reg; |
|
|
|
if (g->nodes[n].forced_reg != NO_REG) |
|
|
|
return g->nodes[n].forced_reg; |
|
|
|
else |
|
|
|
return g->nodes[n].reg; |
|
|
|
} |
|
|
|
|
|
|
|
/** |
|
|
|
@@ -881,8 +908,7 @@ ra_get_node_reg(struct ra_graph *g, unsigned int n) |
|
|
|
void |
|
|
|
ra_set_node_reg(struct ra_graph *g, unsigned int n, unsigned int reg) |
|
|
|
{ |
|
|
|
g->nodes[n].reg = reg; |
|
|
|
BITSET_CLEAR(g->in_stack, n); |
|
|
|
g->nodes[n].forced_reg = reg; |
|
|
|
} |
|
|
|
|
|
|
|
static float |
|
|
|
@@ -930,7 +956,7 @@ ra_get_best_spill_node(struct ra_graph *g) |
|
|
|
if (cost <= 0.0f) |
|
|
|
continue; |
|
|
|
|
|
|
|
if (BITSET_TEST(g->in_stack, n)) |
|
|
|
if (BITSET_TEST(g->tmp.in_stack, n)) |
|
|
|
continue; |
|
|
|
|
|
|
|
benefit = ra_get_spill_benefit(g, n); |