123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341 |
- <HTML>
-
- <TITLE>Shading Language Support</TITLE>
-
- <link rel="stylesheet" type="text/css" href="mesa.css"></head>
-
- <BODY>
-
- <H1>Shading Language Support</H1>
-
- <p>
- This page describes the features and status of Mesa's support for the
- <a href="http://opengl.org/documentation/glsl/" target="_parent">
- OpenGL Shading Language</a>.
- </p>
-
- <p>
- Last updated on 15 December 2008.
- </p>
-
- <p>
- Contents
- </p>
- <ul>
- <li><a href="#120">GLSL 1.20 support</a>
- <li><a href="#unsup">Unsupported Features</a>
- <li><a href="#notes">Implementation Notes</a>
- <li><a href="#hints">Programming Hints</a>
- <li><a href="#standalone">Stand-alone GLSL Compiler</a>
- <li><a href="#implementation">Compiler Implementation</a>
- <li><a href="#validation">Compiler Validation</a>
- </ul>
-
-
-
- <a name="120">
- <h2>GLSL 1.20 support</h2>
-
- <p>
- GLSL version 1.20 is supported in Mesa 7.3.
- Among the features/differences of GLSL 1.20 are:
- <ul>
- <li><code>mat2x3, mat2x4</code>, etc. types and functions
- <li><code>transpose(), outerProduct(), matrixCompMult()</code> functions
- (but untested)
- <li>precision qualifiers (lowp, mediump, highp)
- <li><code>invariant</code> qualifier
- <li><code>array.length()</code> method
- <li><code>float[5] a;</code> array syntax
- <li><code>centroid</code> qualifier
- <li>unsized array constructors
- <li>initializers for uniforms
- <li>const initializers calling built-in functions
- </ul>
-
-
-
- <a name="unsup">
- <h2>Unsupported Features</h2>
-
- <p>
- The following features of the shading language are not yet supported
- in Mesa:
- </p>
-
- <ul>
- <li>Linking of multiple shaders is not supported
- <li>gl_ClipVertex
- <li>The gl_Color and gl_SecondaryColor varying vars are interpolated
- without perspective correction
- </ul>
-
- <p>
- All other major features of the shading language should function.
- </p>
-
-
- <a name="notes">
- <h2>Implementation Notes</h2>
-
- <ul>
- <li>Shading language programs are compiled into low-level programs
- very similar to those of GL_ARB_vertex/fragment_program.
- <li>All vector types (vec2, vec3, vec4, bvec2, etc) currently occupy full
- float[4] registers.
- <li>Float constants and variables are packed so that up to four floats
- can occupy one program parameter/register.
- <li>All function calls are inlined.
- <li>Shaders which use too many registers will not compile.
- <li>The quality of generated code is pretty good, register usage is fair.
- <li>Shader error detection and reporting of errors (InfoLog) is not
- very good yet.
- <li>The ftransform() function doesn't necessarily match the results of
- fixed-function transformation.
- </ul>
-
- <p>
- These issues will be addressed/resolved in the future.
- </p>
-
-
- <a name="hints">
- <h2>Programming Hints</h2>
-
- <ul>
- <li>Declare <em>in</em> function parameters as <em>const</em> whenever possible.
- This improves the efficiency of function inlining.
- </li>
- <br>
- <li>To reduce register usage, declare variables within smaller scopes.
- For example, the following code:
- <pre>
- void main()
- {
- vec4 a1, a2, b1, b2;
- gl_Position = expression using a1, a2.
- gl_Color = expression using b1, b2;
- }
- </pre>
- Can be rewritten as follows to use half as many registers:
- <pre>
- void main()
- {
- {
- vec4 a1, a2;
- gl_Position = expression using a1, a2.
- }
- {
- vec4 b1, b2;
- gl_Color = expression using b1, b2;
- }
- }
- </pre>
- Alternately, rather than using several float variables, use
- a vec4 instead. Use swizzling and writemasks to access the
- components of the vec4 as floats.
- </li>
- <br>
- <li>Use the built-in library functions whenever possible.
- For example, instead of writing this:
- <pre>
- float x = 1.0 / sqrt(y);
- </pre>
- Write this:
- <pre>
- float x = inversesqrt(y);
- </pre>
- <li>
- Use ++i when possible as it's more efficient than i++
- </li>
- </ul>
-
-
- <a name="standalone">
- <h2>Stand-alone GLSL Compiler</h2>
-
- <p>
- A unique stand-alone GLSL compiler driver has been added to Mesa.
- <p>
-
- <p>
- The stand-alone compiler (like a conventional command-line compiler)
- is a tool that accepts Shading Language programs and emits low-level
- GPU programs.
- </p>
-
- <p>
- This tool is useful for:
- <p>
- <ul>
- <li>Inspecting GPU code to gain insight into compilation
- <li>Generating initial GPU code for subsequent hand-tuning
- <li>Debugging the GLSL compiler itself
- </ul>
-
- <p>
- After building Mesa, the glslcompiler can be built by manually running:
- </p>
- <pre>
- cd src/mesa/drivers/glslcompiler
- make
- </pre>
-
-
- <p>
- Here's an example of using the compiler to compile a vertex shader and
- emit GL_ARB_vertex_program-style instructions:
- </p>
- <pre>
- bin/glslcompiler --debug --numbers --fs progs/glsl/CH06-brick.frag.txt
- </pre>
- <p>
- results in:
- </p>
- <pre>
- # Fragment Program/Shader
- 0: RCP TEMP[4].x, UNIFORM[2].xxxx;
- 1: RCP TEMP[4].y, UNIFORM[2].yyyy;
- 2: MUL TEMP[3].xy, VARYING[0], TEMP[4];
- 3: MOV TEMP[1], TEMP[3];
- 4: MUL TEMP[0].w, TEMP[1].yyyy, CONST[4].xxxx;
- 5: FRC TEMP[1].z, TEMP[0].wwww;
- 6: SGT.C TEMP[0].w, TEMP[1].zzzz, CONST[4].xxxx;
- 7: IF (NE.wwww); # (if false, goto 9);
- 8: ADD TEMP[1].x, TEMP[1].xxxx, CONST[4].xxxx;
- 9: ENDIF;
- 10: FRC TEMP[1].xy, TEMP[1];
- 11: SGT TEMP[2].xy, UNIFORM[3], TEMP[1];
- 12: MUL TEMP[1].z, TEMP[2].xxxx, TEMP[2].yyyy;
- 13: LRP TEMP[0], TEMP[1].zzzz, UNIFORM[0], UNIFORM[1];
- 14: MUL TEMP[0].xyz, TEMP[0], VARYING[1].xxxx;
- 15: MOV OUTPUT[0].xyz, TEMP[0];
- 16: MOV OUTPUT[0].w, CONST[4].yyyy;
- 17: END
- </pre>
-
- <p>
- Note that some shading language constructs (such as uniform and varying
- variables) aren't expressible in ARB or NV-style programs.
- Therefore, the resulting output is not always legal by definition of
- those program languages.
- </p>
- <p>
- Also note that this compiler driver is still under development.
- Over time, the correctness of the GPU programs, with respect to the ARB
- and NV languagues, should improve.
- </p>
-
-
-
- <a name="implementation">
- <h2>Compiler Implementation</h2>
-
- <p>
- The source code for Mesa's shading language compiler is in the
- <code>src/mesa/shader/slang/</code> directory.
- </p>
-
- <p>
- The compiler follows a fairly standard design and basically works as follows:
- </p>
- <ul>
- <li>The input string is tokenized (see grammar.c) and parsed
- (see slang_compiler_*.c) to produce an Abstract Syntax Tree (AST).
- The nodes in this tree are slang_operation structures
- (see slang_compile_operation.h).
- The nodes are decorated with symbol table, scoping and datatype information.
- <li>The AST is converted into an Intermediate representation (IR) tree
- (see the slang_codegen.c file).
- The IR nodes represent basic GPU instructions, like add, dot product,
- move, etc.
- The IR tree is mostly a binary tree, but a few nodes have three or four
- children.
- In principle, the IR tree could be executed by doing an in-order traversal.
- <li>The IR tree is traversed in-order to emit code (see slang_emit.c).
- This is also when registers are allocated to store variables and temps.
- <li>In the future, a pattern-matching code generator-generator may be
- used for code generation.
- Programs such as L-BURG (Bottom-Up Rewrite Generator) and Twig look for
- patterns in IR trees, compute weights for subtrees and use the weights
- to select the best instructions to represent the sub-tree.
- <li>The emitted GPU instructions (see prog_instruction.h) are stored in a
- gl_program object (see mtypes.h).
- <li>When a fragment shader and vertex shader are linked (see slang_link.c)
- the varying vars are matched up, uniforms are merged, and vertex
- attributes are resolved (rewriting instructions as needed).
- </ul>
-
- <p>
- The final vertex and fragment programs may be interpreted in software
- (see prog_execute.c) or translated into a specific hardware architecture
- (see drivers/dri/i915/i915_fragprog.c for example).
- </p>
-
- <h3>Code Generation Options</h3>
-
- <p>
- Internally, there are several options that control the compiler's code
- generation and instruction selection.
- These options are seen in the gl_shader_state struct and may be set
- by the device driver to indicate its preferences:
-
- <pre>
- struct gl_shader_state
- {
- ...
- /** Driver-selectable options: */
- GLboolean EmitHighLevelInstructions;
- GLboolean EmitCondCodes;
- GLboolean EmitComments;
- };
- </pre>
-
- <ul>
- <li>EmitHighLevelInstructions
- <br>
- This option controls instruction selection for loops and conditionals.
- If the option is set high-level IF/ELSE/ENDIF, LOOP/ENDLOOP, CONT/BRK
- instructions will be emitted.
- Otherwise, those constructs will be implemented with BRA instructions.
- </li>
-
- <li>EmitCondCodes
- <br>
- If set, condition codes (ala GL_NV_fragment_program) will be used for
- branching and looping.
- Otherwise, ordinary registers will be used (the IF instruction will
- examine the first operand's X component and do the if-part if non-zero).
- This option is only relevant if EmitHighLevelInstructions is set.
- </li>
-
- <li>EmitComments
- <br>
- If set, instructions will be annoted with comments to help with debugging.
- Extra NOP instructions will also be inserted.
- </br>
-
- </ul>
-
-
- <a name="validation">
- <h2>Compiler Validation</h2>
-
- <p>
- A <a href="http://glean.sf.net" target="_parent">Glean</a> test has
- been create to exercise the GLSL compiler.
- </p>
- <p>
- The <em>glsl1</em> test runs over 170 sub-tests to check that the language
- features and built-in functions work properly.
- This test should be run frequently while working on the compiler to catch
- regressions.
- </p>
- <p>
- The test coverage is reasonably broad and complete but additional tests
- should be added.
- </p>
-
-
- </BODY>
- </HTML>
|