123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275 |
- <HTML>
-
- <TITLE>Xlib Software Driver</TITLE>
-
- <link rel="stylesheet" type="text/css" href="mesa.css"></head>
-
- <BODY>
-
- <H1>Xlib Software Driver</H1>
-
- <p>
- Mesa's Xlib driver provides an emulation of the GLX interface so that
- OpenGL programs which use the GLX API can render to any X display, even
- those that don't support the GLX extension.
- Effectively, the Xlib driver converts all OpenGL rendering into Xlib calls.
- </p>
-
- <p>
- The Xlib driver is the oldest Mesa driver and the most mature of Mesa's
- software-only drivers.
- </p>
-
- <p>
- Since the Xlib driver <em>emulates</em> the GLX extension, it's not
- totally conformant with a true GLX implementation.
- The differences are fairly obscure, however.
- </p>
-
- <p>
- The unique features of the Xlib driver follows.
- </p>
-
-
- <H2>X Visual Selection</H2>
- <p>
- Mesa supports RGB(A) rendering into almost any X visual type and depth.
- </p>
- <p>
- The glXChooseVisual function tries to choose the best X visual
- for the given attribute list. However, if this doesn't suit your needs
- you can force Mesa to use any X visual you want (any supported by your
- X server that is) by setting the <b>MESA_RGB_VISUAL</b> and
- <b>MESA_CI_VISUAL</b>
- environment variables.
- When an RGB visual is requested, glXChooseVisual
- will first look if the MESA_RGB_VISUAL variable is defined.
- If so, it will try to use the specified visual.
- Similarly, when a color index visual is requested, glXChooseVisual will
- look for the MESA_CI_VISUAL variable.
- </p>
-
- <p>
- The format of accepted values is: <code>visual-class depth</code>
- </p>
- <p>
- Here are some examples:
- </p>
- <pre>
- using csh:
- % setenv MESA_RGB_VISUAL "TrueColor 8" // 8-bit TrueColor
- % setenv MESA_CI_VISUAL "PseudoColor 12" // 12-bit PseudoColor
- % setenv MESA_RGB_VISUAL "PseudoColor 8" // 8-bit PseudoColor
-
- using bash:
- $ export MESA_RGB_VISUAL="TrueColor 8"
- $ export MESA_CI_VISUAL="PseudoColor 12"
- $ export MESA_RGB_VISUAL="PseudoColor 8"
- </pre>
-
-
- <H2>Double Buffering</H2>
- <p>
- Mesa can use either an X Pixmap or XImage as the back color buffer when in
- double-buffer mode.
- The default is to use an XImage.
- The <b>MESA_BACK_BUFFER</b> environment variable can override this.
- The valid values for <b>MESA_BACK_BUFFER</b> are: <b>Pixmap</b> and
- <b>XImage</b> (only the first letter is checked, case doesn't matter).
- </p>
-
- <p>
- Using XImage is almost always faster than a Pixmap since it resides in
- the application's address space.
- When glXSwapBuffers() is called, XPutImage() or XShmPutImage() is used
- to transfer the XImage to the on-screen window.
- </p>
- <p>
- A Pixmap may be faster when doing remote rendering of a simple scene.
- Some OpenGL features will be very slow with a Pixmap (for example, blending
- will require a round-trip message for pixel readback.)
- </p>
- <p>
- Experiment with the MESA_BACK_BUFFER variable to see which is faster
- for your application.
- </p>
-
-
- <H2>Colormaps</H2>
- <p>
- When using Mesa directly or with GLX, it's up to the application
- writer to create a window with an appropriate colormap. The GLUT
- toolkit tris to minimize colormap <em>flashing</em> by sharing
- colormaps when possible. Specifically, if the visual and depth of the
- window matches that of the root window, the root window's colormap
- will be shared by the Mesa window. Otherwise, a new, private colormap
- will be allocated.
- </p>
-
- <p>
- When sharing the root colormap, Mesa may be unable to allocate the colors
- it needs, resulting in poor color quality. This can happen when a
- large number of colorcells in the root colormap are already allocated.
- To prevent colormap sharing in GLUT, set the
- <b>MESA_PRIVATE_CMAP</b> environment variable. The value isn't
- significant.
- </p>
-
-
- <H2>Gamma Correction</H2>
- <p>
- To compensate for the nonlinear relationship between pixel values
- and displayed intensities, there is a gamma correction feature in
- Mesa. Some systems, such as Silicon Graphics, support gamma
- correction in hardware (man gamma) so you won't need to use Mesa's
- gamma facility. Other systems, however, may need gamma adjustment
- to produce images which look correct. If you believe that
- Mesa's images are too dim, read on.
- </p>
-
- <p>
- Gamma correction is controlled with the <b>MESA_GAMMA</b> environment
- variable. Its value is of the form <b>Gr Gg Gb</b> or just <b>G</b> where
- Gr is the red gamma value, Gg is the green gamma value, Gb is the
- blue gamma value and G is one gamma value to use for all three
- channels. Each value is a positive real number typically in the
- range 1.0 to 2.5.
- The defaults are all 1.0, effectively disabling gamma correction.
- Examples:
- </p>
- <pre>
- % export MESA_GAMMA="2.3 2.2 2.4" // separate R,G,B values
- % export MESA_GAMMA="2.0" // same gamma for R,G,B
- </pre>
- <p>
- The progs/demos/gamma.c program may help you to determine reasonable gamma
- value for your display. With correct gamma values, the color intensities
- displayed in the top row (drawn by dithering) should nearly match those
- in the bottom row (drawn as grays).
- </p>
-
- <p>
- Alex De Bruyn reports that gamma values of 1.6, 1.6 and 1.9 work well
- on HP displays using the HP-ColorRecovery technology.
- </p>
-
- <p>
- Mesa implements gamma correction with a lookup table which translates
- a "linear" pixel value to a gamma-corrected pixel value. There is a
- small performance penalty. Gamma correction only works in RGB mode.
- Also be aware that pixel values read back from the frame buffer will
- not be "un-corrected" so glReadPixels may not return the same data
- drawn with glDrawPixels.
- </p>
-
- <p>
- For more information about gamma correction see:
- <a href="http://www.inforamp.net/~poynton/notes/colour_and_gamma/GammaFAQ.html"
- the Gamma FAQ</a>
- </p>
-
-
- <H2>Overlay Planes</H2>
- <p>
- Hardware overlay planes are supported by the Xlib driver. To
- determine if your X server has overlay support you can test for the
- SERVER_OVERLAY_VISUALS property:
- </p>
- <pre>
- xprop -root | grep SERVER_OVERLAY_VISUALS
- </pre>
-
-
- <H2>HPCR Dithering</H2>
- <p>
- If you set the <b>MESA_HPCR_CLEAR</b> environment variable then dithering
- will be used when clearing the color buffer. This is only applicable
- to HP systems with the HPCR (Color Recovery) feature.
- This incurs a small performance penalty.
- </p>
-
-
- <H2>Extensions</H2>
- <p>
- The following MESA-specific extensions are implemented in the Xlib driver.
- </p>
-
- <h3>GLX_MESA_pixmap_colormap</h3>
-
- <p>
- This extension adds the GLX function:
- </p>
- <pre>
- GLXPixmap glXCreateGLXPixmapMESA( Display *dpy, XVisualInfo *visual,
- Pixmap pixmap, Colormap cmap )
- </pre>
- <p>
- It is an alternative to the standard glXCreateGLXPixmap() function.
- Since Mesa supports RGB rendering into any X visual, not just True-
- Color or DirectColor, Mesa needs colormap information to convert RGB
- values into pixel values. An X window carries this information but a
- pixmap does not. This function associates a colormap to a GLX pixmap.
- See the xdemos/glxpixmap.c file for an example of how to use this
- extension.
- </p>
- <p>
- <a href="MESA_pixmap_colormap.spec">GLX_MESA_pixmap_colormap specification</a>
- </p>
-
-
- <h3>GLX_MESA_release_buffers</h3>
- <p>
- Mesa associates a set of ancillary (depth, accumulation, stencil and
- alpha) buffers with each X window it draws into. These ancillary
- buffers are allocated for each X window the first time the X window
- is passed to glXMakeCurrent(). Mesa, however, can't detect when an
- X window has been destroyed in order to free the ancillary buffers.
- </p>
- <p>
- The best it can do is to check for recently destroyed windows whenever
- the client calls the glXCreateContext() or glXDestroyContext()
- functions. This may not be sufficient in all situations though.
- </p>
- <p>
- The GLX_MESA_release_buffers extension allows a client to explicitly
- deallocate the ancillary buffers by calling glxReleaseBuffersMESA()
- just before an X window is destroyed. For example:
- </p>
- <pre>
- #ifdef GLX_MESA_release_buffers
- glXReleaseBuffersMESA( dpy, window );
- #endif
- XDestroyWindow( dpy, window );
- </pre>
- <p>
- <a href="MESA_release_buffers.spec">GLX_MESA_release_buffers specification</a>
- </p>
- <p>
- This extension was added in Mesa 2.0.
- </p>
-
- <H3>GLX_MESA_copy_sub_buffer</H3>
- <p>
- This extension adds the glXCopySubBufferMESA() function. It works
- like glXSwapBuffers() but only copies a sub-region of the window
- instead of the whole window.
- </p>
- <p>
- <a href="MESA_copy_sub_buffer.spec">GLX_MESA_copy_sub_buffer specification</a>
- </p>
- <p>
- This extension was added in Mesa 2.6
- </p>
-
- <h2>Summary of X-related environment variables</H2>
- <pre>
- MESA_RGB_VISUAL - specifies the X visual and depth for RGB mode (X only)
- MESA_CI_VISUAL - specifies the X visual and depth for CI mode (X only)
- MESA_BACK_BUFFER - specifies how to implement the back color buffer (X only)
- MESA_PRIVATE_CMAP - force aux/tk libraries to use private colormaps (X only)
- MESA_GAMMA - gamma correction coefficients (X only)
- </pre>
-
-
- </body>
- </html>
|