1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498 |
- /*
- * Copyright © 2015 Intel Corporation
- *
- * Permission is hereby granted, free of charge, to any person obtaining a
- * copy of this software and associated documentation files (the "Software"),
- * to deal in the Software without restriction, including without limitation
- * the rights to use, copy, modify, merge, publish, distribute, sublicense,
- * and/or sell copies of the Software, and to permit persons to whom the
- * Software is furnished to do so, subject to the following conditions:
- *
- * The above copyright notice and this permission notice (including the next
- * paragraph) shall be included in all copies or substantial portions of the
- * Software.
- *
- * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
- * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
- * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
- * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
- * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
- * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
- * IN THE SOFTWARE.
- */
-
- #include <stdlib.h>
- #include <unistd.h>
- #include <limits.h>
- #include <assert.h>
- #include <linux/memfd.h>
- #include <sys/mman.h>
-
- #include "anv_private.h"
-
- #include "util/hash_table.h"
- #include "util/simple_mtx.h"
-
- #ifdef HAVE_VALGRIND
- #define VG_NOACCESS_READ(__ptr) ({ \
- VALGRIND_MAKE_MEM_DEFINED((__ptr), sizeof(*(__ptr))); \
- __typeof(*(__ptr)) __val = *(__ptr); \
- VALGRIND_MAKE_MEM_NOACCESS((__ptr), sizeof(*(__ptr)));\
- __val; \
- })
- #define VG_NOACCESS_WRITE(__ptr, __val) ({ \
- VALGRIND_MAKE_MEM_UNDEFINED((__ptr), sizeof(*(__ptr))); \
- *(__ptr) = (__val); \
- VALGRIND_MAKE_MEM_NOACCESS((__ptr), sizeof(*(__ptr))); \
- })
- #else
- #define VG_NOACCESS_READ(__ptr) (*(__ptr))
- #define VG_NOACCESS_WRITE(__ptr, __val) (*(__ptr) = (__val))
- #endif
-
- /* Design goals:
- *
- * - Lock free (except when resizing underlying bos)
- *
- * - Constant time allocation with typically only one atomic
- *
- * - Multiple allocation sizes without fragmentation
- *
- * - Can grow while keeping addresses and offset of contents stable
- *
- * - All allocations within one bo so we can point one of the
- * STATE_BASE_ADDRESS pointers at it.
- *
- * The overall design is a two-level allocator: top level is a fixed size, big
- * block (8k) allocator, which operates out of a bo. Allocation is done by
- * either pulling a block from the free list or growing the used range of the
- * bo. Growing the range may run out of space in the bo which we then need to
- * grow. Growing the bo is tricky in a multi-threaded, lockless environment:
- * we need to keep all pointers and contents in the old map valid. GEM bos in
- * general can't grow, but we use a trick: we create a memfd and use ftruncate
- * to grow it as necessary. We mmap the new size and then create a gem bo for
- * it using the new gem userptr ioctl. Without heavy-handed locking around
- * our allocation fast-path, there isn't really a way to munmap the old mmap,
- * so we just keep it around until garbage collection time. While the block
- * allocator is lockless for normal operations, we block other threads trying
- * to allocate while we're growing the map. It sholdn't happen often, and
- * growing is fast anyway.
- *
- * At the next level we can use various sub-allocators. The state pool is a
- * pool of smaller, fixed size objects, which operates much like the block
- * pool. It uses a free list for freeing objects, but when it runs out of
- * space it just allocates a new block from the block pool. This allocator is
- * intended for longer lived state objects such as SURFACE_STATE and most
- * other persistent state objects in the API. We may need to track more info
- * with these object and a pointer back to the CPU object (eg VkImage). In
- * those cases we just allocate a slightly bigger object and put the extra
- * state after the GPU state object.
- *
- * The state stream allocator works similar to how the i965 DRI driver streams
- * all its state. Even with Vulkan, we need to emit transient state (whether
- * surface state base or dynamic state base), and for that we can just get a
- * block and fill it up. These cases are local to a command buffer and the
- * sub-allocator need not be thread safe. The streaming allocator gets a new
- * block when it runs out of space and chains them together so they can be
- * easily freed.
- */
-
- /* Allocations are always at least 64 byte aligned, so 1 is an invalid value.
- * We use it to indicate the free list is empty. */
- #define EMPTY 1
-
- struct anv_mmap_cleanup {
- void *map;
- size_t size;
- uint32_t gem_handle;
- };
-
- #define ANV_MMAP_CLEANUP_INIT ((struct anv_mmap_cleanup){0})
-
- #ifndef HAVE_MEMFD_CREATE
- static inline int
- memfd_create(const char *name, unsigned int flags)
- {
- return syscall(SYS_memfd_create, name, flags);
- }
- #endif
-
- static inline uint32_t
- ilog2_round_up(uint32_t value)
- {
- assert(value != 0);
- return 32 - __builtin_clz(value - 1);
- }
-
- static inline uint32_t
- round_to_power_of_two(uint32_t value)
- {
- return 1 << ilog2_round_up(value);
- }
-
- static bool
- anv_free_list_pop(union anv_free_list *list, void **map, int32_t *offset)
- {
- union anv_free_list current, new, old;
-
- current.u64 = list->u64;
- while (current.offset != EMPTY) {
- /* We have to add a memory barrier here so that the list head (and
- * offset) gets read before we read the map pointer. This way we
- * know that the map pointer is valid for the given offset at the
- * point where we read it.
- */
- __sync_synchronize();
-
- int32_t *next_ptr = *map + current.offset;
- new.offset = VG_NOACCESS_READ(next_ptr);
- new.count = current.count + 1;
- old.u64 = __sync_val_compare_and_swap(&list->u64, current.u64, new.u64);
- if (old.u64 == current.u64) {
- *offset = current.offset;
- return true;
- }
- current = old;
- }
-
- return false;
- }
-
- static void
- anv_free_list_push(union anv_free_list *list, void *map, int32_t offset,
- uint32_t size, uint32_t count)
- {
- union anv_free_list current, old, new;
- int32_t *next_ptr = map + offset;
-
- /* If we're returning more than one chunk, we need to build a chain to add
- * to the list. Fortunately, we can do this without any atomics since we
- * own everything in the chain right now. `offset` is left pointing to the
- * head of our chain list while `next_ptr` points to the tail.
- */
- for (uint32_t i = 1; i < count; i++) {
- VG_NOACCESS_WRITE(next_ptr, offset + i * size);
- next_ptr = map + offset + i * size;
- }
-
- old = *list;
- do {
- current = old;
- VG_NOACCESS_WRITE(next_ptr, current.offset);
- new.offset = offset;
- new.count = current.count + 1;
- old.u64 = __sync_val_compare_and_swap(&list->u64, current.u64, new.u64);
- } while (old.u64 != current.u64);
- }
-
- /* All pointers in the ptr_free_list are assumed to be page-aligned. This
- * means that the bottom 12 bits should all be zero.
- */
- #define PFL_COUNT(x) ((uintptr_t)(x) & 0xfff)
- #define PFL_PTR(x) ((void *)((uintptr_t)(x) & ~(uintptr_t)0xfff))
- #define PFL_PACK(ptr, count) ({ \
- (void *)(((uintptr_t)(ptr) & ~(uintptr_t)0xfff) | ((count) & 0xfff)); \
- })
-
- static bool
- anv_ptr_free_list_pop(void **list, void **elem)
- {
- void *current = *list;
- while (PFL_PTR(current) != NULL) {
- void **next_ptr = PFL_PTR(current);
- void *new_ptr = VG_NOACCESS_READ(next_ptr);
- unsigned new_count = PFL_COUNT(current) + 1;
- void *new = PFL_PACK(new_ptr, new_count);
- void *old = __sync_val_compare_and_swap(list, current, new);
- if (old == current) {
- *elem = PFL_PTR(current);
- return true;
- }
- current = old;
- }
-
- return false;
- }
-
- static void
- anv_ptr_free_list_push(void **list, void *elem)
- {
- void *old, *current;
- void **next_ptr = elem;
-
- /* The pointer-based free list requires that the pointer be
- * page-aligned. This is because we use the bottom 12 bits of the
- * pointer to store a counter to solve the ABA concurrency problem.
- */
- assert(((uintptr_t)elem & 0xfff) == 0);
-
- old = *list;
- do {
- current = old;
- VG_NOACCESS_WRITE(next_ptr, PFL_PTR(current));
- unsigned new_count = PFL_COUNT(current) + 1;
- void *new = PFL_PACK(elem, new_count);
- old = __sync_val_compare_and_swap(list, current, new);
- } while (old != current);
- }
-
- static VkResult
- anv_block_pool_expand_range(struct anv_block_pool *pool,
- uint32_t center_bo_offset, uint32_t size);
-
- VkResult
- anv_block_pool_init(struct anv_block_pool *pool,
- struct anv_device *device,
- uint64_t start_address,
- uint32_t initial_size,
- uint64_t bo_flags)
- {
- VkResult result;
-
- pool->device = device;
- pool->bo_flags = bo_flags;
- pool->start_address = gen_canonical_address(start_address);
-
- anv_bo_init(&pool->bo, 0, 0);
-
- pool->fd = memfd_create("block pool", MFD_CLOEXEC);
- if (pool->fd == -1)
- return vk_error(VK_ERROR_INITIALIZATION_FAILED);
-
- /* Just make it 2GB up-front. The Linux kernel won't actually back it
- * with pages until we either map and fault on one of them or we use
- * userptr and send a chunk of it off to the GPU.
- */
- if (ftruncate(pool->fd, BLOCK_POOL_MEMFD_SIZE) == -1) {
- result = vk_error(VK_ERROR_INITIALIZATION_FAILED);
- goto fail_fd;
- }
-
- if (!u_vector_init(&pool->mmap_cleanups,
- round_to_power_of_two(sizeof(struct anv_mmap_cleanup)),
- 128)) {
- result = vk_error(VK_ERROR_INITIALIZATION_FAILED);
- goto fail_fd;
- }
-
- pool->state.next = 0;
- pool->state.end = 0;
- pool->back_state.next = 0;
- pool->back_state.end = 0;
-
- result = anv_block_pool_expand_range(pool, 0, initial_size);
- if (result != VK_SUCCESS)
- goto fail_mmap_cleanups;
-
- return VK_SUCCESS;
-
- fail_mmap_cleanups:
- u_vector_finish(&pool->mmap_cleanups);
- fail_fd:
- close(pool->fd);
-
- return result;
- }
-
- void
- anv_block_pool_finish(struct anv_block_pool *pool)
- {
- struct anv_mmap_cleanup *cleanup;
-
- u_vector_foreach(cleanup, &pool->mmap_cleanups) {
- if (cleanup->map)
- munmap(cleanup->map, cleanup->size);
- if (cleanup->gem_handle)
- anv_gem_close(pool->device, cleanup->gem_handle);
- }
-
- u_vector_finish(&pool->mmap_cleanups);
-
- close(pool->fd);
- }
-
- #define PAGE_SIZE 4096
-
- static VkResult
- anv_block_pool_expand_range(struct anv_block_pool *pool,
- uint32_t center_bo_offset, uint32_t size)
- {
- void *map;
- uint32_t gem_handle;
- struct anv_mmap_cleanup *cleanup;
-
- /* Assert that we only ever grow the pool */
- assert(center_bo_offset >= pool->back_state.end);
- assert(size - center_bo_offset >= pool->state.end);
-
- /* Assert that we don't go outside the bounds of the memfd */
- assert(center_bo_offset <= BLOCK_POOL_MEMFD_CENTER);
- assert(size - center_bo_offset <=
- BLOCK_POOL_MEMFD_SIZE - BLOCK_POOL_MEMFD_CENTER);
-
- cleanup = u_vector_add(&pool->mmap_cleanups);
- if (!cleanup)
- return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
-
- *cleanup = ANV_MMAP_CLEANUP_INIT;
-
- /* Just leak the old map until we destroy the pool. We can't munmap it
- * without races or imposing locking on the block allocate fast path. On
- * the whole the leaked maps adds up to less than the size of the
- * current map. MAP_POPULATE seems like the right thing to do, but we
- * should try to get some numbers.
- */
- map = mmap(NULL, size, PROT_READ | PROT_WRITE,
- MAP_SHARED | MAP_POPULATE, pool->fd,
- BLOCK_POOL_MEMFD_CENTER - center_bo_offset);
- if (map == MAP_FAILED)
- return vk_errorf(pool->device->instance, pool->device,
- VK_ERROR_MEMORY_MAP_FAILED, "mmap failed: %m");
-
- gem_handle = anv_gem_userptr(pool->device, map, size);
- if (gem_handle == 0) {
- munmap(map, size);
- return vk_errorf(pool->device->instance, pool->device,
- VK_ERROR_TOO_MANY_OBJECTS, "userptr failed: %m");
- }
-
- cleanup->map = map;
- cleanup->size = size;
- cleanup->gem_handle = gem_handle;
-
- #if 0
- /* Regular objects are created I915_CACHING_CACHED on LLC platforms and
- * I915_CACHING_NONE on non-LLC platforms. However, userptr objects are
- * always created as I915_CACHING_CACHED, which on non-LLC means
- * snooped. That can be useful but comes with a bit of overheard. Since
- * we're eplicitly clflushing and don't want the overhead we need to turn
- * it off. */
- if (!pool->device->info.has_llc) {
- anv_gem_set_caching(pool->device, gem_handle, I915_CACHING_NONE);
- anv_gem_set_domain(pool->device, gem_handle,
- I915_GEM_DOMAIN_GTT, I915_GEM_DOMAIN_GTT);
- }
- #endif
-
- /* Now that we successfull allocated everything, we can write the new
- * values back into pool. */
- pool->map = map + center_bo_offset;
- pool->center_bo_offset = center_bo_offset;
-
- /* For block pool BOs we have to be a bit careful about where we place them
- * in the GTT. There are two documented workarounds for state base address
- * placement : Wa32bitGeneralStateOffset and Wa32bitInstructionBaseOffset
- * which state that those two base addresses do not support 48-bit
- * addresses and need to be placed in the bottom 32-bit range.
- * Unfortunately, this is not quite accurate.
- *
- * The real problem is that we always set the size of our state pools in
- * STATE_BASE_ADDRESS to 0xfffff (the maximum) even though the BO is most
- * likely significantly smaller. We do this because we do not no at the
- * time we emit STATE_BASE_ADDRESS whether or not we will need to expand
- * the pool during command buffer building so we don't actually have a
- * valid final size. If the address + size, as seen by STATE_BASE_ADDRESS
- * overflows 48 bits, the GPU appears to treat all accesses to the buffer
- * as being out of bounds and returns zero. For dynamic state, this
- * usually just leads to rendering corruptions, but shaders that are all
- * zero hang the GPU immediately.
- *
- * The easiest solution to do is exactly what the bogus workarounds say to
- * do: restrict these buffers to 32-bit addresses. We could also pin the
- * BO to some particular location of our choosing, but that's significantly
- * more work than just not setting a flag. So, we explicitly DO NOT set
- * the EXEC_OBJECT_SUPPORTS_48B_ADDRESS flag and the kernel does all of the
- * hard work for us.
- */
- anv_bo_init(&pool->bo, gem_handle, size);
- if (pool->bo_flags & EXEC_OBJECT_PINNED) {
- pool->bo.offset = pool->start_address + BLOCK_POOL_MEMFD_CENTER -
- center_bo_offset;
- }
- pool->bo.flags = pool->bo_flags;
- pool->bo.map = map;
-
- return VK_SUCCESS;
- }
-
- /** Grows and re-centers the block pool.
- *
- * We grow the block pool in one or both directions in such a way that the
- * following conditions are met:
- *
- * 1) The size of the entire pool is always a power of two.
- *
- * 2) The pool only grows on both ends. Neither end can get
- * shortened.
- *
- * 3) At the end of the allocation, we have about twice as much space
- * allocated for each end as we have used. This way the pool doesn't
- * grow too far in one direction or the other.
- *
- * 4) If the _alloc_back() has never been called, then the back portion of
- * the pool retains a size of zero. (This makes it easier for users of
- * the block pool that only want a one-sided pool.)
- *
- * 5) We have enough space allocated for at least one more block in
- * whichever side `state` points to.
- *
- * 6) The center of the pool is always aligned to both the block_size of
- * the pool and a 4K CPU page.
- */
- static uint32_t
- anv_block_pool_grow(struct anv_block_pool *pool, struct anv_block_state *state)
- {
- VkResult result = VK_SUCCESS;
-
- pthread_mutex_lock(&pool->device->mutex);
-
- assert(state == &pool->state || state == &pool->back_state);
-
- /* Gather a little usage information on the pool. Since we may have
- * threadsd waiting in queue to get some storage while we resize, it's
- * actually possible that total_used will be larger than old_size. In
- * particular, block_pool_alloc() increments state->next prior to
- * calling block_pool_grow, so this ensures that we get enough space for
- * which ever side tries to grow the pool.
- *
- * We align to a page size because it makes it easier to do our
- * calculations later in such a way that we state page-aigned.
- */
- uint32_t back_used = align_u32(pool->back_state.next, PAGE_SIZE);
- uint32_t front_used = align_u32(pool->state.next, PAGE_SIZE);
- uint32_t total_used = front_used + back_used;
-
- assert(state == &pool->state || back_used > 0);
-
- uint32_t old_size = pool->bo.size;
-
- /* The block pool is always initialized to a nonzero size and this function
- * is always called after initialization.
- */
- assert(old_size > 0);
-
- /* The back_used and front_used may actually be smaller than the actual
- * requirement because they are based on the next pointers which are
- * updated prior to calling this function.
- */
- uint32_t back_required = MAX2(back_used, pool->center_bo_offset);
- uint32_t front_required = MAX2(front_used, old_size - pool->center_bo_offset);
-
- if (back_used * 2 <= back_required && front_used * 2 <= front_required) {
- /* If we're in this case then this isn't the firsta allocation and we
- * already have enough space on both sides to hold double what we
- * have allocated. There's nothing for us to do.
- */
- goto done;
- }
-
- uint32_t size = old_size * 2;
- while (size < back_required + front_required)
- size *= 2;
-
- assert(size > pool->bo.size);
-
- /* We compute a new center_bo_offset such that, when we double the size
- * of the pool, we maintain the ratio of how much is used by each side.
- * This way things should remain more-or-less balanced.
- */
- uint32_t center_bo_offset;
- if (back_used == 0) {
- /* If we're in this case then we have never called alloc_back(). In
- * this case, we want keep the offset at 0 to make things as simple
- * as possible for users that don't care about back allocations.
- */
- center_bo_offset = 0;
- } else {
- /* Try to "center" the allocation based on how much is currently in
- * use on each side of the center line.
- */
- center_bo_offset = ((uint64_t)size * back_used) / total_used;
-
- /* Align down to a multiple of the page size */
- center_bo_offset &= ~(PAGE_SIZE - 1);
-
- assert(center_bo_offset >= back_used);
-
- /* Make sure we don't shrink the back end of the pool */
- if (center_bo_offset < back_required)
- center_bo_offset = back_required;
-
- /* Make sure that we don't shrink the front end of the pool */
- if (size - center_bo_offset < front_required)
- center_bo_offset = size - front_required;
- }
-
- assert(center_bo_offset % PAGE_SIZE == 0);
-
- result = anv_block_pool_expand_range(pool, center_bo_offset, size);
-
- pool->bo.flags = pool->bo_flags;
-
- done:
- pthread_mutex_unlock(&pool->device->mutex);
-
- if (result == VK_SUCCESS) {
- /* Return the appropriate new size. This function never actually
- * updates state->next. Instead, we let the caller do that because it
- * needs to do so in order to maintain its concurrency model.
- */
- if (state == &pool->state) {
- return pool->bo.size - pool->center_bo_offset;
- } else {
- assert(pool->center_bo_offset > 0);
- return pool->center_bo_offset;
- }
- } else {
- return 0;
- }
- }
-
- static uint32_t
- anv_block_pool_alloc_new(struct anv_block_pool *pool,
- struct anv_block_state *pool_state,
- uint32_t block_size)
- {
- struct anv_block_state state, old, new;
-
- while (1) {
- state.u64 = __sync_fetch_and_add(&pool_state->u64, block_size);
- if (state.next + block_size <= state.end) {
- assert(pool->map);
- return state.next;
- } else if (state.next <= state.end) {
- /* We allocated the first block outside the pool so we have to grow
- * the pool. pool_state->next acts a mutex: threads who try to
- * allocate now will get block indexes above the current limit and
- * hit futex_wait below.
- */
- new.next = state.next + block_size;
- do {
- new.end = anv_block_pool_grow(pool, pool_state);
- } while (new.end < new.next);
-
- old.u64 = __sync_lock_test_and_set(&pool_state->u64, new.u64);
- if (old.next != state.next)
- futex_wake(&pool_state->end, INT_MAX);
- return state.next;
- } else {
- futex_wait(&pool_state->end, state.end, NULL);
- continue;
- }
- }
- }
-
- int32_t
- anv_block_pool_alloc(struct anv_block_pool *pool,
- uint32_t block_size)
- {
- return anv_block_pool_alloc_new(pool, &pool->state, block_size);
- }
-
- /* Allocates a block out of the back of the block pool.
- *
- * This will allocated a block earlier than the "start" of the block pool.
- * The offsets returned from this function will be negative but will still
- * be correct relative to the block pool's map pointer.
- *
- * If you ever use anv_block_pool_alloc_back, then you will have to do
- * gymnastics with the block pool's BO when doing relocations.
- */
- int32_t
- anv_block_pool_alloc_back(struct anv_block_pool *pool,
- uint32_t block_size)
- {
- int32_t offset = anv_block_pool_alloc_new(pool, &pool->back_state,
- block_size);
-
- /* The offset we get out of anv_block_pool_alloc_new() is actually the
- * number of bytes downwards from the middle to the end of the block.
- * We need to turn it into a (negative) offset from the middle to the
- * start of the block.
- */
- assert(offset >= 0);
- return -(offset + block_size);
- }
-
- VkResult
- anv_state_pool_init(struct anv_state_pool *pool,
- struct anv_device *device,
- uint64_t start_address,
- uint32_t block_size,
- uint64_t bo_flags)
- {
- VkResult result = anv_block_pool_init(&pool->block_pool, device,
- start_address,
- block_size * 16,
- bo_flags);
- if (result != VK_SUCCESS)
- return result;
-
- assert(util_is_power_of_two_or_zero(block_size));
- pool->block_size = block_size;
- pool->back_alloc_free_list = ANV_FREE_LIST_EMPTY;
- for (unsigned i = 0; i < ANV_STATE_BUCKETS; i++) {
- pool->buckets[i].free_list = ANV_FREE_LIST_EMPTY;
- pool->buckets[i].block.next = 0;
- pool->buckets[i].block.end = 0;
- }
- VG(VALGRIND_CREATE_MEMPOOL(pool, 0, false));
-
- return VK_SUCCESS;
- }
-
- void
- anv_state_pool_finish(struct anv_state_pool *pool)
- {
- VG(VALGRIND_DESTROY_MEMPOOL(pool));
- anv_block_pool_finish(&pool->block_pool);
- }
-
- static uint32_t
- anv_fixed_size_state_pool_alloc_new(struct anv_fixed_size_state_pool *pool,
- struct anv_block_pool *block_pool,
- uint32_t state_size,
- uint32_t block_size)
- {
- struct anv_block_state block, old, new;
- uint32_t offset;
-
- /* If our state is large, we don't need any sub-allocation from a block.
- * Instead, we just grab whole (potentially large) blocks.
- */
- if (state_size >= block_size)
- return anv_block_pool_alloc(block_pool, state_size);
-
- restart:
- block.u64 = __sync_fetch_and_add(&pool->block.u64, state_size);
-
- if (block.next < block.end) {
- return block.next;
- } else if (block.next == block.end) {
- offset = anv_block_pool_alloc(block_pool, block_size);
- new.next = offset + state_size;
- new.end = offset + block_size;
- old.u64 = __sync_lock_test_and_set(&pool->block.u64, new.u64);
- if (old.next != block.next)
- futex_wake(&pool->block.end, INT_MAX);
- return offset;
- } else {
- futex_wait(&pool->block.end, block.end, NULL);
- goto restart;
- }
- }
-
- static uint32_t
- anv_state_pool_get_bucket(uint32_t size)
- {
- unsigned size_log2 = ilog2_round_up(size);
- assert(size_log2 <= ANV_MAX_STATE_SIZE_LOG2);
- if (size_log2 < ANV_MIN_STATE_SIZE_LOG2)
- size_log2 = ANV_MIN_STATE_SIZE_LOG2;
- return size_log2 - ANV_MIN_STATE_SIZE_LOG2;
- }
-
- static uint32_t
- anv_state_pool_get_bucket_size(uint32_t bucket)
- {
- uint32_t size_log2 = bucket + ANV_MIN_STATE_SIZE_LOG2;
- return 1 << size_log2;
- }
-
- static struct anv_state
- anv_state_pool_alloc_no_vg(struct anv_state_pool *pool,
- uint32_t size, uint32_t align)
- {
- uint32_t bucket = anv_state_pool_get_bucket(MAX2(size, align));
-
- struct anv_state state;
- state.alloc_size = anv_state_pool_get_bucket_size(bucket);
-
- /* Try free list first. */
- if (anv_free_list_pop(&pool->buckets[bucket].free_list,
- &pool->block_pool.map, &state.offset)) {
- assert(state.offset >= 0);
- goto done;
- }
-
- /* Try to grab a chunk from some larger bucket and split it up */
- for (unsigned b = bucket + 1; b < ANV_STATE_BUCKETS; b++) {
- int32_t chunk_offset;
- if (anv_free_list_pop(&pool->buckets[b].free_list,
- &pool->block_pool.map, &chunk_offset)) {
- unsigned chunk_size = anv_state_pool_get_bucket_size(b);
-
- /* We've found a chunk that's larger than the requested state size.
- * There are a couple of options as to what we do with it:
- *
- * 1) We could fully split the chunk into state.alloc_size sized
- * pieces. However, this would mean that allocating a 16B
- * state could potentially split a 2MB chunk into 512K smaller
- * chunks. This would lead to unnecessary fragmentation.
- *
- * 2) The classic "buddy allocator" method would have us split the
- * chunk in half and return one half. Then we would split the
- * remaining half in half and return one half, and repeat as
- * needed until we get down to the size we want. However, if
- * you are allocating a bunch of the same size state (which is
- * the common case), this means that every other allocation has
- * to go up a level and every fourth goes up two levels, etc.
- * This is not nearly as efficient as it could be if we did a
- * little more work up-front.
- *
- * 3) Split the difference between (1) and (2) by doing a
- * two-level split. If it's bigger than some fixed block_size,
- * we split it into block_size sized chunks and return all but
- * one of them. Then we split what remains into
- * state.alloc_size sized chunks and return all but one.
- *
- * We choose option (3).
- */
- if (chunk_size > pool->block_size &&
- state.alloc_size < pool->block_size) {
- assert(chunk_size % pool->block_size == 0);
- /* We don't want to split giant chunks into tiny chunks. Instead,
- * break anything bigger than a block into block-sized chunks and
- * then break it down into bucket-sized chunks from there. Return
- * all but the first block of the chunk to the block bucket.
- */
- const uint32_t block_bucket =
- anv_state_pool_get_bucket(pool->block_size);
- anv_free_list_push(&pool->buckets[block_bucket].free_list,
- pool->block_pool.map,
- chunk_offset + pool->block_size,
- pool->block_size,
- (chunk_size / pool->block_size) - 1);
- chunk_size = pool->block_size;
- }
-
- assert(chunk_size % state.alloc_size == 0);
- anv_free_list_push(&pool->buckets[bucket].free_list,
- pool->block_pool.map,
- chunk_offset + state.alloc_size,
- state.alloc_size,
- (chunk_size / state.alloc_size) - 1);
-
- state.offset = chunk_offset;
- goto done;
- }
- }
-
- state.offset = anv_fixed_size_state_pool_alloc_new(&pool->buckets[bucket],
- &pool->block_pool,
- state.alloc_size,
- pool->block_size);
-
- done:
- state.map = pool->block_pool.map + state.offset;
- return state;
- }
-
- struct anv_state
- anv_state_pool_alloc(struct anv_state_pool *pool, uint32_t size, uint32_t align)
- {
- if (size == 0)
- return ANV_STATE_NULL;
-
- struct anv_state state = anv_state_pool_alloc_no_vg(pool, size, align);
- VG(VALGRIND_MEMPOOL_ALLOC(pool, state.map, size));
- return state;
- }
-
- struct anv_state
- anv_state_pool_alloc_back(struct anv_state_pool *pool)
- {
- struct anv_state state;
- state.alloc_size = pool->block_size;
-
- if (anv_free_list_pop(&pool->back_alloc_free_list,
- &pool->block_pool.map, &state.offset)) {
- assert(state.offset < 0);
- goto done;
- }
-
- state.offset = anv_block_pool_alloc_back(&pool->block_pool,
- pool->block_size);
-
- done:
- state.map = pool->block_pool.map + state.offset;
- VG(VALGRIND_MEMPOOL_ALLOC(pool, state.map, state.alloc_size));
- return state;
- }
-
- static void
- anv_state_pool_free_no_vg(struct anv_state_pool *pool, struct anv_state state)
- {
- assert(util_is_power_of_two_or_zero(state.alloc_size));
- unsigned bucket = anv_state_pool_get_bucket(state.alloc_size);
-
- if (state.offset < 0) {
- assert(state.alloc_size == pool->block_size);
- anv_free_list_push(&pool->back_alloc_free_list,
- pool->block_pool.map, state.offset,
- state.alloc_size, 1);
- } else {
- anv_free_list_push(&pool->buckets[bucket].free_list,
- pool->block_pool.map, state.offset,
- state.alloc_size, 1);
- }
- }
-
- void
- anv_state_pool_free(struct anv_state_pool *pool, struct anv_state state)
- {
- if (state.alloc_size == 0)
- return;
-
- VG(VALGRIND_MEMPOOL_FREE(pool, state.map));
- anv_state_pool_free_no_vg(pool, state);
- }
-
- struct anv_state_stream_block {
- struct anv_state block;
-
- /* The next block */
- struct anv_state_stream_block *next;
-
- #ifdef HAVE_VALGRIND
- /* A pointer to the first user-allocated thing in this block. This is
- * what valgrind sees as the start of the block.
- */
- void *_vg_ptr;
- #endif
- };
-
- /* The state stream allocator is a one-shot, single threaded allocator for
- * variable sized blocks. We use it for allocating dynamic state.
- */
- void
- anv_state_stream_init(struct anv_state_stream *stream,
- struct anv_state_pool *state_pool,
- uint32_t block_size)
- {
- stream->state_pool = state_pool;
- stream->block_size = block_size;
-
- stream->block = ANV_STATE_NULL;
-
- stream->block_list = NULL;
-
- /* Ensure that next + whatever > block_size. This way the first call to
- * state_stream_alloc fetches a new block.
- */
- stream->next = block_size;
-
- VG(VALGRIND_CREATE_MEMPOOL(stream, 0, false));
- }
-
- void
- anv_state_stream_finish(struct anv_state_stream *stream)
- {
- struct anv_state_stream_block *next = stream->block_list;
- while (next != NULL) {
- struct anv_state_stream_block sb = VG_NOACCESS_READ(next);
- VG(VALGRIND_MEMPOOL_FREE(stream, sb._vg_ptr));
- VG(VALGRIND_MAKE_MEM_UNDEFINED(next, stream->block_size));
- anv_state_pool_free_no_vg(stream->state_pool, sb.block);
- next = sb.next;
- }
-
- VG(VALGRIND_DESTROY_MEMPOOL(stream));
- }
-
- struct anv_state
- anv_state_stream_alloc(struct anv_state_stream *stream,
- uint32_t size, uint32_t alignment)
- {
- if (size == 0)
- return ANV_STATE_NULL;
-
- assert(alignment <= PAGE_SIZE);
-
- uint32_t offset = align_u32(stream->next, alignment);
- if (offset + size > stream->block.alloc_size) {
- uint32_t block_size = stream->block_size;
- if (block_size < size)
- block_size = round_to_power_of_two(size);
-
- stream->block = anv_state_pool_alloc_no_vg(stream->state_pool,
- block_size, PAGE_SIZE);
-
- struct anv_state_stream_block *sb = stream->block.map;
- VG_NOACCESS_WRITE(&sb->block, stream->block);
- VG_NOACCESS_WRITE(&sb->next, stream->block_list);
- stream->block_list = sb;
- VG(VG_NOACCESS_WRITE(&sb->_vg_ptr, NULL));
-
- VG(VALGRIND_MAKE_MEM_NOACCESS(stream->block.map, stream->block_size));
-
- /* Reset back to the start plus space for the header */
- stream->next = sizeof(*sb);
-
- offset = align_u32(stream->next, alignment);
- assert(offset + size <= stream->block.alloc_size);
- }
-
- struct anv_state state = stream->block;
- state.offset += offset;
- state.alloc_size = size;
- state.map += offset;
-
- stream->next = offset + size;
-
- #ifdef HAVE_VALGRIND
- struct anv_state_stream_block *sb = stream->block_list;
- void *vg_ptr = VG_NOACCESS_READ(&sb->_vg_ptr);
- if (vg_ptr == NULL) {
- vg_ptr = state.map;
- VG_NOACCESS_WRITE(&sb->_vg_ptr, vg_ptr);
- VALGRIND_MEMPOOL_ALLOC(stream, vg_ptr, size);
- } else {
- void *state_end = state.map + state.alloc_size;
- /* This only updates the mempool. The newly allocated chunk is still
- * marked as NOACCESS. */
- VALGRIND_MEMPOOL_CHANGE(stream, vg_ptr, vg_ptr, state_end - vg_ptr);
- /* Mark the newly allocated chunk as undefined */
- VALGRIND_MAKE_MEM_UNDEFINED(state.map, state.alloc_size);
- }
- #endif
-
- return state;
- }
-
- struct bo_pool_bo_link {
- struct bo_pool_bo_link *next;
- struct anv_bo bo;
- };
-
- void
- anv_bo_pool_init(struct anv_bo_pool *pool, struct anv_device *device,
- uint64_t bo_flags)
- {
- pool->device = device;
- pool->bo_flags = bo_flags;
- memset(pool->free_list, 0, sizeof(pool->free_list));
-
- VG(VALGRIND_CREATE_MEMPOOL(pool, 0, false));
- }
-
- void
- anv_bo_pool_finish(struct anv_bo_pool *pool)
- {
- for (unsigned i = 0; i < ARRAY_SIZE(pool->free_list); i++) {
- struct bo_pool_bo_link *link = PFL_PTR(pool->free_list[i]);
- while (link != NULL) {
- struct bo_pool_bo_link link_copy = VG_NOACCESS_READ(link);
-
- anv_gem_munmap(link_copy.bo.map, link_copy.bo.size);
- anv_vma_free(pool->device, &link_copy.bo);
- anv_gem_close(pool->device, link_copy.bo.gem_handle);
- link = link_copy.next;
- }
- }
-
- VG(VALGRIND_DESTROY_MEMPOOL(pool));
- }
-
- VkResult
- anv_bo_pool_alloc(struct anv_bo_pool *pool, struct anv_bo *bo, uint32_t size)
- {
- VkResult result;
-
- const unsigned size_log2 = size < 4096 ? 12 : ilog2_round_up(size);
- const unsigned pow2_size = 1 << size_log2;
- const unsigned bucket = size_log2 - 12;
- assert(bucket < ARRAY_SIZE(pool->free_list));
-
- void *next_free_void;
- if (anv_ptr_free_list_pop(&pool->free_list[bucket], &next_free_void)) {
- struct bo_pool_bo_link *next_free = next_free_void;
- *bo = VG_NOACCESS_READ(&next_free->bo);
- assert(bo->gem_handle);
- assert(bo->map == next_free);
- assert(size <= bo->size);
-
- VG(VALGRIND_MEMPOOL_ALLOC(pool, bo->map, size));
-
- return VK_SUCCESS;
- }
-
- struct anv_bo new_bo;
-
- result = anv_bo_init_new(&new_bo, pool->device, pow2_size);
- if (result != VK_SUCCESS)
- return result;
-
- new_bo.flags = pool->bo_flags;
-
- if (!anv_vma_alloc(pool->device, &new_bo))
- return vk_error(VK_ERROR_OUT_OF_DEVICE_MEMORY);
-
- assert(new_bo.size == pow2_size);
-
- new_bo.map = anv_gem_mmap(pool->device, new_bo.gem_handle, 0, pow2_size, 0);
- if (new_bo.map == MAP_FAILED) {
- anv_gem_close(pool->device, new_bo.gem_handle);
- anv_vma_free(pool->device, &new_bo);
- return vk_error(VK_ERROR_MEMORY_MAP_FAILED);
- }
-
- *bo = new_bo;
-
- VG(VALGRIND_MEMPOOL_ALLOC(pool, bo->map, size));
-
- return VK_SUCCESS;
- }
-
- void
- anv_bo_pool_free(struct anv_bo_pool *pool, const struct anv_bo *bo_in)
- {
- /* Make a copy in case the anv_bo happens to be storred in the BO */
- struct anv_bo bo = *bo_in;
-
- VG(VALGRIND_MEMPOOL_FREE(pool, bo.map));
-
- struct bo_pool_bo_link *link = bo.map;
- VG_NOACCESS_WRITE(&link->bo, bo);
-
- assert(util_is_power_of_two_or_zero(bo.size));
- const unsigned size_log2 = ilog2_round_up(bo.size);
- const unsigned bucket = size_log2 - 12;
- assert(bucket < ARRAY_SIZE(pool->free_list));
-
- anv_ptr_free_list_push(&pool->free_list[bucket], link);
- }
-
- // Scratch pool
-
- void
- anv_scratch_pool_init(struct anv_device *device, struct anv_scratch_pool *pool)
- {
- memset(pool, 0, sizeof(*pool));
- }
-
- void
- anv_scratch_pool_finish(struct anv_device *device, struct anv_scratch_pool *pool)
- {
- for (unsigned s = 0; s < MESA_SHADER_STAGES; s++) {
- for (unsigned i = 0; i < 16; i++) {
- struct anv_scratch_bo *bo = &pool->bos[i][s];
- if (bo->exists > 0) {
- anv_vma_free(device, &bo->bo);
- anv_gem_close(device, bo->bo.gem_handle);
- }
- }
- }
- }
-
- struct anv_bo *
- anv_scratch_pool_alloc(struct anv_device *device, struct anv_scratch_pool *pool,
- gl_shader_stage stage, unsigned per_thread_scratch)
- {
- if (per_thread_scratch == 0)
- return NULL;
-
- unsigned scratch_size_log2 = ffs(per_thread_scratch / 2048);
- assert(scratch_size_log2 < 16);
-
- struct anv_scratch_bo *bo = &pool->bos[scratch_size_log2][stage];
-
- /* We can use "exists" to shortcut and ignore the critical section */
- if (bo->exists)
- return &bo->bo;
-
- pthread_mutex_lock(&device->mutex);
-
- __sync_synchronize();
- if (bo->exists) {
- pthread_mutex_unlock(&device->mutex);
- return &bo->bo;
- }
-
- const struct anv_physical_device *physical_device =
- &device->instance->physicalDevice;
- const struct gen_device_info *devinfo = &physical_device->info;
-
- const unsigned subslices = MAX2(physical_device->subslice_total, 1);
-
- unsigned scratch_ids_per_subslice;
- if (devinfo->is_haswell) {
- /* WaCSScratchSize:hsw
- *
- * Haswell's scratch space address calculation appears to be sparse
- * rather than tightly packed. The Thread ID has bits indicating
- * which subslice, EU within a subslice, and thread within an EU it
- * is. There's a maximum of two slices and two subslices, so these
- * can be stored with a single bit. Even though there are only 10 EUs
- * per subslice, this is stored in 4 bits, so there's an effective
- * maximum value of 16 EUs. Similarly, although there are only 7
- * threads per EU, this is stored in a 3 bit number, giving an
- * effective maximum value of 8 threads per EU.
- *
- * This means that we need to use 16 * 8 instead of 10 * 7 for the
- * number of threads per subslice.
- */
- scratch_ids_per_subslice = 16 * 8;
- } else if (devinfo->is_cherryview) {
- /* Cherryview devices have either 6 or 8 EUs per subslice, and each EU
- * has 7 threads. The 6 EU devices appear to calculate thread IDs as if
- * it had 8 EUs.
- */
- scratch_ids_per_subslice = 8 * 7;
- } else {
- scratch_ids_per_subslice = devinfo->max_cs_threads;
- }
-
- uint32_t max_threads[] = {
- [MESA_SHADER_VERTEX] = devinfo->max_vs_threads,
- [MESA_SHADER_TESS_CTRL] = devinfo->max_tcs_threads,
- [MESA_SHADER_TESS_EVAL] = devinfo->max_tes_threads,
- [MESA_SHADER_GEOMETRY] = devinfo->max_gs_threads,
- [MESA_SHADER_FRAGMENT] = devinfo->max_wm_threads,
- [MESA_SHADER_COMPUTE] = scratch_ids_per_subslice * subslices,
- };
-
- uint32_t size = per_thread_scratch * max_threads[stage];
-
- anv_bo_init_new(&bo->bo, device, size);
-
- /* Even though the Scratch base pointers in 3DSTATE_*S are 64 bits, they
- * are still relative to the general state base address. When we emit
- * STATE_BASE_ADDRESS, we set general state base address to 0 and the size
- * to the maximum (1 page under 4GB). This allows us to just place the
- * scratch buffers anywhere we wish in the bottom 32 bits of address space
- * and just set the scratch base pointer in 3DSTATE_*S using a relocation.
- * However, in order to do so, we need to ensure that the kernel does not
- * place the scratch BO above the 32-bit boundary.
- *
- * NOTE: Technically, it can't go "anywhere" because the top page is off
- * limits. However, when EXEC_OBJECT_SUPPORTS_48B_ADDRESS is set, the
- * kernel allocates space using
- *
- * end = min_t(u64, end, (1ULL << 32) - I915_GTT_PAGE_SIZE);
- *
- * so nothing will ever touch the top page.
- */
- assert(!(bo->bo.flags & EXEC_OBJECT_SUPPORTS_48B_ADDRESS));
-
- if (device->instance->physicalDevice.has_exec_async)
- bo->bo.flags |= EXEC_OBJECT_ASYNC;
-
- if (device->instance->physicalDevice.use_softpin)
- bo->bo.flags |= EXEC_OBJECT_PINNED;
-
- anv_vma_alloc(device, &bo->bo);
-
- /* Set the exists last because it may be read by other threads */
- __sync_synchronize();
- bo->exists = true;
-
- pthread_mutex_unlock(&device->mutex);
-
- return &bo->bo;
- }
-
- struct anv_cached_bo {
- struct anv_bo bo;
-
- uint32_t refcount;
- };
-
- VkResult
- anv_bo_cache_init(struct anv_bo_cache *cache)
- {
- cache->bo_map = _mesa_hash_table_create(NULL, _mesa_hash_pointer,
- _mesa_key_pointer_equal);
- if (!cache->bo_map)
- return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
-
- if (pthread_mutex_init(&cache->mutex, NULL)) {
- _mesa_hash_table_destroy(cache->bo_map, NULL);
- return vk_errorf(NULL, NULL, VK_ERROR_OUT_OF_HOST_MEMORY,
- "pthread_mutex_init failed: %m");
- }
-
- return VK_SUCCESS;
- }
-
- void
- anv_bo_cache_finish(struct anv_bo_cache *cache)
- {
- _mesa_hash_table_destroy(cache->bo_map, NULL);
- pthread_mutex_destroy(&cache->mutex);
- }
-
- static struct anv_cached_bo *
- anv_bo_cache_lookup_locked(struct anv_bo_cache *cache, uint32_t gem_handle)
- {
- struct hash_entry *entry =
- _mesa_hash_table_search(cache->bo_map,
- (const void *)(uintptr_t)gem_handle);
- if (!entry)
- return NULL;
-
- struct anv_cached_bo *bo = (struct anv_cached_bo *)entry->data;
- assert(bo->bo.gem_handle == gem_handle);
-
- return bo;
- }
-
- UNUSED static struct anv_bo *
- anv_bo_cache_lookup(struct anv_bo_cache *cache, uint32_t gem_handle)
- {
- pthread_mutex_lock(&cache->mutex);
-
- struct anv_cached_bo *bo = anv_bo_cache_lookup_locked(cache, gem_handle);
-
- pthread_mutex_unlock(&cache->mutex);
-
- return bo ? &bo->bo : NULL;
- }
-
- #define ANV_BO_CACHE_SUPPORTED_FLAGS \
- (EXEC_OBJECT_WRITE | \
- EXEC_OBJECT_ASYNC | \
- EXEC_OBJECT_SUPPORTS_48B_ADDRESS | \
- EXEC_OBJECT_PINNED | \
- ANV_BO_EXTERNAL)
-
- VkResult
- anv_bo_cache_alloc(struct anv_device *device,
- struct anv_bo_cache *cache,
- uint64_t size, uint64_t bo_flags,
- struct anv_bo **bo_out)
- {
- assert(bo_flags == (bo_flags & ANV_BO_CACHE_SUPPORTED_FLAGS));
-
- struct anv_cached_bo *bo =
- vk_alloc(&device->alloc, sizeof(struct anv_cached_bo), 8,
- VK_SYSTEM_ALLOCATION_SCOPE_OBJECT);
- if (!bo)
- return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
-
- bo->refcount = 1;
-
- /* The kernel is going to give us whole pages anyway */
- size = align_u64(size, 4096);
-
- VkResult result = anv_bo_init_new(&bo->bo, device, size);
- if (result != VK_SUCCESS) {
- vk_free(&device->alloc, bo);
- return result;
- }
-
- bo->bo.flags = bo_flags;
-
- if (!anv_vma_alloc(device, &bo->bo)) {
- anv_gem_close(device, bo->bo.gem_handle);
- vk_free(&device->alloc, bo);
- return vk_errorf(device->instance, NULL,
- VK_ERROR_OUT_OF_DEVICE_MEMORY,
- "failed to allocate virtual address for BO");
- }
-
- assert(bo->bo.gem_handle);
-
- pthread_mutex_lock(&cache->mutex);
-
- _mesa_hash_table_insert(cache->bo_map,
- (void *)(uintptr_t)bo->bo.gem_handle, bo);
-
- pthread_mutex_unlock(&cache->mutex);
-
- *bo_out = &bo->bo;
-
- return VK_SUCCESS;
- }
-
- VkResult
- anv_bo_cache_import(struct anv_device *device,
- struct anv_bo_cache *cache,
- int fd, uint64_t bo_flags,
- struct anv_bo **bo_out)
- {
- assert(bo_flags == (bo_flags & ANV_BO_CACHE_SUPPORTED_FLAGS));
- assert(bo_flags & ANV_BO_EXTERNAL);
-
- pthread_mutex_lock(&cache->mutex);
-
- uint32_t gem_handle = anv_gem_fd_to_handle(device, fd);
- if (!gem_handle) {
- pthread_mutex_unlock(&cache->mutex);
- return vk_error(VK_ERROR_INVALID_EXTERNAL_HANDLE_KHR);
- }
-
- struct anv_cached_bo *bo = anv_bo_cache_lookup_locked(cache, gem_handle);
- if (bo) {
- /* We have to be careful how we combine flags so that it makes sense.
- * Really, though, if we get to this case and it actually matters, the
- * client has imported a BO twice in different ways and they get what
- * they have coming.
- */
- uint64_t new_flags = ANV_BO_EXTERNAL;
- new_flags |= (bo->bo.flags | bo_flags) & EXEC_OBJECT_WRITE;
- new_flags |= (bo->bo.flags & bo_flags) & EXEC_OBJECT_ASYNC;
- new_flags |= (bo->bo.flags & bo_flags) & EXEC_OBJECT_SUPPORTS_48B_ADDRESS;
- new_flags |= (bo->bo.flags | bo_flags) & EXEC_OBJECT_PINNED;
-
- /* It's theoretically possible for a BO to get imported such that it's
- * both pinned and not pinned. The only way this can happen is if it
- * gets imported as both a semaphore and a memory object and that would
- * be an application error. Just fail out in that case.
- */
- if ((bo->bo.flags & EXEC_OBJECT_PINNED) !=
- (bo_flags & EXEC_OBJECT_PINNED)) {
- pthread_mutex_unlock(&cache->mutex);
- return vk_errorf(device->instance, NULL,
- VK_ERROR_INVALID_EXTERNAL_HANDLE,
- "The same BO was imported two different ways");
- }
-
- /* It's also theoretically possible that someone could export a BO from
- * one heap and import it into another or to import the same BO into two
- * different heaps. If this happens, we could potentially end up both
- * allowing and disallowing 48-bit addresses. There's not much we can
- * do about it if we're pinning so we just throw an error and hope no
- * app is actually that stupid.
- */
- if ((new_flags & EXEC_OBJECT_PINNED) &&
- (bo->bo.flags & EXEC_OBJECT_SUPPORTS_48B_ADDRESS) !=
- (bo_flags & EXEC_OBJECT_SUPPORTS_48B_ADDRESS)) {
- return vk_errorf(device->instance, NULL,
- VK_ERROR_INVALID_EXTERNAL_HANDLE,
- "The same BO was imported on two different heaps");
- }
-
- bo->bo.flags = new_flags;
-
- __sync_fetch_and_add(&bo->refcount, 1);
- } else {
- off_t size = lseek(fd, 0, SEEK_END);
- if (size == (off_t)-1) {
- anv_gem_close(device, gem_handle);
- pthread_mutex_unlock(&cache->mutex);
- return vk_error(VK_ERROR_INVALID_EXTERNAL_HANDLE_KHR);
- }
-
- bo = vk_alloc(&device->alloc, sizeof(struct anv_cached_bo), 8,
- VK_SYSTEM_ALLOCATION_SCOPE_OBJECT);
- if (!bo) {
- anv_gem_close(device, gem_handle);
- pthread_mutex_unlock(&cache->mutex);
- return vk_error(VK_ERROR_OUT_OF_HOST_MEMORY);
- }
-
- bo->refcount = 1;
-
- anv_bo_init(&bo->bo, gem_handle, size);
- bo->bo.flags = bo_flags;
-
- if (!anv_vma_alloc(device, &bo->bo)) {
- anv_gem_close(device, bo->bo.gem_handle);
- pthread_mutex_unlock(&cache->mutex);
- vk_free(&device->alloc, bo);
- return vk_errorf(device->instance, NULL,
- VK_ERROR_OUT_OF_DEVICE_MEMORY,
- "failed to allocate virtual address for BO");
- }
-
- _mesa_hash_table_insert(cache->bo_map, (void *)(uintptr_t)gem_handle, bo);
- }
-
- pthread_mutex_unlock(&cache->mutex);
- *bo_out = &bo->bo;
-
- return VK_SUCCESS;
- }
-
- VkResult
- anv_bo_cache_export(struct anv_device *device,
- struct anv_bo_cache *cache,
- struct anv_bo *bo_in, int *fd_out)
- {
- assert(anv_bo_cache_lookup(cache, bo_in->gem_handle) == bo_in);
- struct anv_cached_bo *bo = (struct anv_cached_bo *)bo_in;
-
- /* This BO must have been flagged external in order for us to be able
- * to export it. This is done based on external options passed into
- * anv_AllocateMemory.
- */
- assert(bo->bo.flags & ANV_BO_EXTERNAL);
-
- int fd = anv_gem_handle_to_fd(device, bo->bo.gem_handle);
- if (fd < 0)
- return vk_error(VK_ERROR_TOO_MANY_OBJECTS);
-
- *fd_out = fd;
-
- return VK_SUCCESS;
- }
-
- static bool
- atomic_dec_not_one(uint32_t *counter)
- {
- uint32_t old, val;
-
- val = *counter;
- while (1) {
- if (val == 1)
- return false;
-
- old = __sync_val_compare_and_swap(counter, val, val - 1);
- if (old == val)
- return true;
-
- val = old;
- }
- }
-
- void
- anv_bo_cache_release(struct anv_device *device,
- struct anv_bo_cache *cache,
- struct anv_bo *bo_in)
- {
- assert(anv_bo_cache_lookup(cache, bo_in->gem_handle) == bo_in);
- struct anv_cached_bo *bo = (struct anv_cached_bo *)bo_in;
-
- /* Try to decrement the counter but don't go below one. If this succeeds
- * then the refcount has been decremented and we are not the last
- * reference.
- */
- if (atomic_dec_not_one(&bo->refcount))
- return;
-
- pthread_mutex_lock(&cache->mutex);
-
- /* We are probably the last reference since our attempt to decrement above
- * failed. However, we can't actually know until we are inside the mutex.
- * Otherwise, someone could import the BO between the decrement and our
- * taking the mutex.
- */
- if (unlikely(__sync_sub_and_fetch(&bo->refcount, 1) > 0)) {
- /* Turns out we're not the last reference. Unlock and bail. */
- pthread_mutex_unlock(&cache->mutex);
- return;
- }
-
- struct hash_entry *entry =
- _mesa_hash_table_search(cache->bo_map,
- (const void *)(uintptr_t)bo->bo.gem_handle);
- assert(entry);
- _mesa_hash_table_remove(cache->bo_map, entry);
-
- if (bo->bo.map)
- anv_gem_munmap(bo->bo.map, bo->bo.size);
-
- anv_vma_free(device, &bo->bo);
-
- anv_gem_close(device, bo->bo.gem_handle);
-
- /* Don't unlock until we've actually closed the BO. The whole point of
- * the BO cache is to ensure that we correctly handle races with creating
- * and releasing GEM handles and we don't want to let someone import the BO
- * again between mutex unlock and closing the GEM handle.
- */
- pthread_mutex_unlock(&cache->mutex);
-
- vk_free(&device->alloc, bo);
- }
|