|
|
@@ -52,7 +52,12 @@ struct lower_variables_state { |
|
|
|
|
|
|
|
/* A hash table mapping variables to deref_node data */ |
|
|
|
struct hash_table *deref_var_nodes; |
|
|
|
/* A hash table mapping dereference leaves to deref_node data */ |
|
|
|
|
|
|
|
/* A hash table mapping dereference leaves to deref_node data. A deref |
|
|
|
* is considered a leaf if it is fully-qualified (no wildcards) and |
|
|
|
* direct. In short, these are the derefs we can actually consider |
|
|
|
* lowering to SSA values. |
|
|
|
*/ |
|
|
|
struct hash_table *deref_leaves; |
|
|
|
|
|
|
|
/* A hash table mapping phi nodes to deref_state data */ |
|
|
@@ -63,6 +68,9 @@ struct lower_variables_state { |
|
|
|
* variable dreferences. When the hash or equality function encounters an |
|
|
|
* array, all indirects are treated as equal and are never equal to a |
|
|
|
* direct dereference or a wildcard. |
|
|
|
* |
|
|
|
* Some of the magic numbers here were taken from _mesa_hash_data and one |
|
|
|
* was just a big prime I found on the internet. |
|
|
|
*/ |
|
|
|
static uint32_t |
|
|
|
hash_deref(const void *void_deref) |
|
|
@@ -170,6 +178,10 @@ deref_node_create(struct deref_node *parent, |
|
|
|
return node; |
|
|
|
} |
|
|
|
|
|
|
|
/* Gets the deref_node for the given deref chain and creates it if it |
|
|
|
* doesn't yet exist. If the deref is a leaf (fully-qualified and direct) |
|
|
|
* and add_to_leaves is true, it will be added to the hash table of leaves. |
|
|
|
*/ |
|
|
|
static struct deref_node * |
|
|
|
get_deref_node(nir_deref_var *deref, bool add_to_leaves, |
|
|
|
struct lower_variables_state *state) |
|
|
@@ -268,56 +280,7 @@ get_deref_node(nir_deref_var *deref, bool add_to_leaves, |
|
|
|
return parent; |
|
|
|
} |
|
|
|
|
|
|
|
static void |
|
|
|
register_load_instr(nir_intrinsic_instr *load_instr, bool create_node, |
|
|
|
struct lower_variables_state *state) |
|
|
|
{ |
|
|
|
struct deref_node *node = get_deref_node(load_instr->variables[0], |
|
|
|
create_node, state); |
|
|
|
if (node == NULL) |
|
|
|
return; |
|
|
|
|
|
|
|
if (node->loads == NULL) |
|
|
|
node->loads = _mesa_set_create(state->dead_ctx, |
|
|
|
_mesa_key_pointer_equal); |
|
|
|
|
|
|
|
_mesa_set_add(node->loads, _mesa_hash_pointer(load_instr), load_instr); |
|
|
|
} |
|
|
|
|
|
|
|
static void |
|
|
|
register_store_instr(nir_intrinsic_instr *store_instr, bool create_node, |
|
|
|
struct lower_variables_state *state) |
|
|
|
{ |
|
|
|
struct deref_node *node = get_deref_node(store_instr->variables[0], |
|
|
|
create_node, state); |
|
|
|
if (node == NULL) |
|
|
|
return; |
|
|
|
|
|
|
|
if (node->stores == NULL) |
|
|
|
node->stores = _mesa_set_create(state->dead_ctx, |
|
|
|
_mesa_key_pointer_equal); |
|
|
|
|
|
|
|
_mesa_set_add(node->stores, _mesa_hash_pointer(store_instr), store_instr); |
|
|
|
} |
|
|
|
|
|
|
|
static void |
|
|
|
register_copy_instr(nir_intrinsic_instr *copy_instr, bool create_node, |
|
|
|
struct lower_variables_state *state) |
|
|
|
{ |
|
|
|
for (unsigned idx = 0; idx < 2; idx++) { |
|
|
|
struct deref_node *node = get_deref_node(copy_instr->variables[idx], |
|
|
|
create_node, state); |
|
|
|
if (node == NULL) |
|
|
|
continue; |
|
|
|
|
|
|
|
if (node->copies == NULL) |
|
|
|
node->copies = _mesa_set_create(state->dead_ctx, |
|
|
|
_mesa_key_pointer_equal); |
|
|
|
|
|
|
|
_mesa_set_add(node->copies, _mesa_hash_pointer(copy_instr), copy_instr); |
|
|
|
} |
|
|
|
} |
|
|
|
|
|
|
|
/* \sa foreach_deref_node_match */ |
|
|
|
static bool |
|
|
|
foreach_deref_node_worker(struct deref_node *node, nir_deref *deref, |
|
|
|
bool (* cb)(struct deref_node *node, |
|
|
@@ -356,6 +319,18 @@ foreach_deref_node_worker(struct deref_node *node, nir_deref *deref, |
|
|
|
} |
|
|
|
} |
|
|
|
|
|
|
|
/* Walks over every "matching" deref_node and calls the callback. A node |
|
|
|
* is considered to "match" if either refers to that deref or matches up t |
|
|
|
* a wildcard. In other words, the following would match a[6].foo[3].bar: |
|
|
|
* |
|
|
|
* a[6].foo[3].bar |
|
|
|
* a[*].foo[3].bar |
|
|
|
* a[6].foo[*].bar |
|
|
|
* a[*].foo[*].bar |
|
|
|
* |
|
|
|
* The given deref must be a full-length and fully qualified (no wildcards |
|
|
|
* or indirexcts) deref chain. |
|
|
|
*/ |
|
|
|
static bool |
|
|
|
foreach_deref_node_match(nir_deref_var *deref, |
|
|
|
bool (* cb)(struct deref_node *node, |
|
|
@@ -372,9 +347,7 @@ foreach_deref_node_match(nir_deref_var *deref, |
|
|
|
return foreach_deref_node_worker(node, &deref->deref, cb, state); |
|
|
|
} |
|
|
|
|
|
|
|
/* This question can only be asked about leaves. Searching down the tree |
|
|
|
* is much harder than searching up. |
|
|
|
*/ |
|
|
|
/* \sa deref_may_be_aliased */ |
|
|
|
static bool |
|
|
|
deref_may_be_aliased_node(struct deref_node *node, nir_deref *deref, |
|
|
|
struct lower_variables_state *state) |
|
|
@@ -418,6 +391,15 @@ deref_may_be_aliased_node(struct deref_node *node, nir_deref *deref, |
|
|
|
} |
|
|
|
} |
|
|
|
|
|
|
|
/* Returns true if there are no indirects that can ever touch this deref. |
|
|
|
* This question can only be asked about fully-qualified derefs. |
|
|
|
* Obviously, it's pointless to ask this about indirects, but we also |
|
|
|
* rule-out wildcards. For example, if the given deref is a[6].foo, then |
|
|
|
* any uses of a[i].foo would case this to return false, but a[i].bar would |
|
|
|
* not affect it because it's a different structure member. A var_copy |
|
|
|
* involving of a[*].bar also doesn't affect it because that can be lowered |
|
|
|
* to entirely direct load/stores. |
|
|
|
*/ |
|
|
|
static bool |
|
|
|
deref_may_be_aliased(nir_deref_var *deref, |
|
|
|
struct lower_variables_state *state) |
|
|
@@ -433,8 +415,59 @@ deref_may_be_aliased(nir_deref_var *deref, |
|
|
|
return deref_may_be_aliased_node(node, &deref->deref, state); |
|
|
|
} |
|
|
|
|
|
|
|
static void |
|
|
|
register_load_instr(nir_intrinsic_instr *load_instr, bool create_node, |
|
|
|
struct lower_variables_state *state) |
|
|
|
{ |
|
|
|
struct deref_node *node = get_deref_node(load_instr->variables[0], |
|
|
|
create_node, state); |
|
|
|
if (node == NULL) |
|
|
|
return; |
|
|
|
|
|
|
|
if (node->loads == NULL) |
|
|
|
node->loads = _mesa_set_create(state->dead_ctx, |
|
|
|
_mesa_key_pointer_equal); |
|
|
|
|
|
|
|
_mesa_set_add(node->loads, _mesa_hash_pointer(load_instr), load_instr); |
|
|
|
} |
|
|
|
|
|
|
|
static void |
|
|
|
register_store_instr(nir_intrinsic_instr *store_instr, bool create_node, |
|
|
|
struct lower_variables_state *state) |
|
|
|
{ |
|
|
|
struct deref_node *node = get_deref_node(store_instr->variables[0], |
|
|
|
create_node, state); |
|
|
|
if (node == NULL) |
|
|
|
return; |
|
|
|
|
|
|
|
if (node->stores == NULL) |
|
|
|
node->stores = _mesa_set_create(state->dead_ctx, |
|
|
|
_mesa_key_pointer_equal); |
|
|
|
|
|
|
|
_mesa_set_add(node->stores, _mesa_hash_pointer(store_instr), store_instr); |
|
|
|
} |
|
|
|
|
|
|
|
static void |
|
|
|
register_copy_instr(nir_intrinsic_instr *copy_instr, bool create_node, |
|
|
|
struct lower_variables_state *state) |
|
|
|
{ |
|
|
|
for (unsigned idx = 0; idx < 2; idx++) { |
|
|
|
struct deref_node *node = get_deref_node(copy_instr->variables[idx], |
|
|
|
create_node, state); |
|
|
|
if (node == NULL) |
|
|
|
continue; |
|
|
|
|
|
|
|
if (node->copies == NULL) |
|
|
|
node->copies = _mesa_set_create(state->dead_ctx, |
|
|
|
_mesa_key_pointer_equal); |
|
|
|
|
|
|
|
_mesa_set_add(node->copies, _mesa_hash_pointer(copy_instr), copy_instr); |
|
|
|
} |
|
|
|
} |
|
|
|
|
|
|
|
/* Registers all variable uses in the given block. */ |
|
|
|
static bool |
|
|
|
fill_deref_tables_block(nir_block *block, void *void_state) |
|
|
|
register_variable_uses_block(nir_block *block, void *void_state) |
|
|
|
{ |
|
|
|
struct lower_variables_state *state = void_state; |
|
|
|
|
|
|
@@ -465,6 +498,11 @@ fill_deref_tables_block(nir_block *block, void *void_state) |
|
|
|
return true; |
|
|
|
} |
|
|
|
|
|
|
|
/* Walks down the deref chain and returns the next deref in the chain whose |
|
|
|
* child is a wildcard. In other words, given the chain a[1].foo[*].bar, |
|
|
|
* this function will return the deref to foo. Calling it a second time |
|
|
|
* with the [*].bar, it will return NULL. |
|
|
|
*/ |
|
|
|
static nir_deref * |
|
|
|
deref_next_wildcard_parent(nir_deref *deref) |
|
|
|
{ |
|
|
@@ -481,6 +519,8 @@ deref_next_wildcard_parent(nir_deref *deref) |
|
|
|
return NULL; |
|
|
|
} |
|
|
|
|
|
|
|
/* Returns the last deref in the chain. |
|
|
|
*/ |
|
|
|
static nir_deref * |
|
|
|
get_deref_tail(nir_deref *deref) |
|
|
|
{ |
|
|
@@ -490,25 +530,51 @@ get_deref_tail(nir_deref *deref) |
|
|
|
return deref; |
|
|
|
} |
|
|
|
|
|
|
|
/* This function recursively walks the given deref chain and replaces the |
|
|
|
* given copy instruction with an equivalent sequence load/store |
|
|
|
* operations. |
|
|
|
* |
|
|
|
* @copy_instr The copy instruction to replace; new instructions will be |
|
|
|
* inserted before this one |
|
|
|
* |
|
|
|
* @dest_head The head of the destination variable deref chain |
|
|
|
* |
|
|
|
* @src_head The head of the source variable deref chain |
|
|
|
* |
|
|
|
* @dest_tail The current tail of the destination variable deref chain; |
|
|
|
* this is used for recursion and external callers of this |
|
|
|
* function should call it with tail == head |
|
|
|
* |
|
|
|
* @src_tail The current tail of the source variable deref chain; |
|
|
|
* this is used for recursion and external callers of this |
|
|
|
* function should call it with tail == head |
|
|
|
* |
|
|
|
* @state The current variable lowering state |
|
|
|
*/ |
|
|
|
static void |
|
|
|
emit_copy_load_store(nir_intrinsic_instr *copy_instr, |
|
|
|
nir_deref_var *dest_head, nir_deref_var *src_head, |
|
|
|
nir_deref *dest_tail, nir_deref *src_tail, |
|
|
|
struct lower_variables_state *state) |
|
|
|
{ |
|
|
|
/* Find the next pair of wildcards */ |
|
|
|
nir_deref *src_arr_parent = deref_next_wildcard_parent(src_tail); |
|
|
|
nir_deref *dest_arr_parent = deref_next_wildcard_parent(dest_tail); |
|
|
|
|
|
|
|
if (src_arr_parent || dest_arr_parent) { |
|
|
|
/* Wildcards had better come in matched pairs */ |
|
|
|
assert(dest_arr_parent && dest_arr_parent); |
|
|
|
|
|
|
|
nir_deref_array *src_arr = nir_deref_as_array(src_arr_parent->child); |
|
|
|
nir_deref_array *dest_arr = nir_deref_as_array(dest_arr_parent->child); |
|
|
|
|
|
|
|
unsigned length = type_get_length(src_arr_parent->type); |
|
|
|
/* The wildcards should represent the same number of elements */ |
|
|
|
assert(length == type_get_length(dest_arr_parent->type)); |
|
|
|
assert(length > 0); |
|
|
|
|
|
|
|
/* Walk over all of the elements that this wildcard refers to and |
|
|
|
* call emit_copy_load_store on each one of them */ |
|
|
|
src_arr->deref_array_type = nir_deref_array_type_direct; |
|
|
|
dest_arr->deref_array_type = nir_deref_array_type_direct; |
|
|
|
for (unsigned i = 0; i < length; i++) { |
|
|
@@ -520,7 +586,8 @@ emit_copy_load_store(nir_intrinsic_instr *copy_instr, |
|
|
|
src_arr->deref_array_type = nir_deref_array_type_wildcard; |
|
|
|
dest_arr->deref_array_type = nir_deref_array_type_wildcard; |
|
|
|
} else { |
|
|
|
/* Base case. Actually do the copy */ |
|
|
|
/* In this case, we have no wildcards anymore, so all we have to do |
|
|
|
* is just emit the load and store operations. */ |
|
|
|
src_tail = get_deref_tail(src_tail); |
|
|
|
dest_tail = get_deref_tail(dest_tail); |
|
|
|
|
|
|
@@ -553,6 +620,9 @@ emit_copy_load_store(nir_intrinsic_instr *copy_instr, |
|
|
|
} |
|
|
|
} |
|
|
|
|
|
|
|
/* Walks over all of the copy instructions to or from the given deref_node |
|
|
|
* and lowers them to load/store intrinsics. |
|
|
|
*/ |
|
|
|
static bool |
|
|
|
lower_copies_to_load_store(struct deref_node *node, |
|
|
|
struct lower_variables_state *state) |
|
|
@@ -588,6 +658,10 @@ lower_copies_to_load_store(struct deref_node *node, |
|
|
|
return true; |
|
|
|
} |
|
|
|
|
|
|
|
/* Returns a load_const instruction that represents the constant |
|
|
|
* initializer for the given deref chain. The caller is responsible for |
|
|
|
* ensuring that there actually is a constant initializer. |
|
|
|
*/ |
|
|
|
static nir_load_const_instr * |
|
|
|
get_const_initializer_load(const nir_deref_var *deref, |
|
|
|
struct lower_variables_state *state) |
|
|
@@ -645,6 +719,15 @@ get_const_initializer_load(const nir_deref_var *deref, |
|
|
|
return load; |
|
|
|
} |
|
|
|
|
|
|
|
/** Pushes an SSA def onto the def stack for the given node |
|
|
|
* |
|
|
|
* Each node is potentially associated with a stack of SSA definitions. |
|
|
|
* This stack is used for determining what SSA definition reaches a given |
|
|
|
* point in the program for variable renaming. The stack is always kept in |
|
|
|
* dominance-order with at most one SSA def per block. If the SSA |
|
|
|
* definition on the top of the stack is in the same block as the one being |
|
|
|
* pushed, the top element is replaced. |
|
|
|
*/ |
|
|
|
static void |
|
|
|
def_stack_push(struct deref_node *node, nir_ssa_def *def, |
|
|
|
struct lower_variables_state *state) |
|
|
@@ -668,6 +751,16 @@ def_stack_push(struct deref_node *node, nir_ssa_def *def, |
|
|
|
*(++node->def_stack_tail) = def; |
|
|
|
} |
|
|
|
|
|
|
|
/** Retrieves the SSA definition associated with the given node that |
|
|
|
* reaches the current point in the program |
|
|
|
* |
|
|
|
* If the SSA def on the top of the stack is in the given block or some |
|
|
|
* other block that dominates the given block, then the top of the stack is |
|
|
|
* returned. Otherwise, the stack is popped until we get to an SSA |
|
|
|
* definition that dominates the given block and that is returned. If we |
|
|
|
* pop the stack all the way to empty, then we return the constant |
|
|
|
* initializer (if it exists) or an SSA undef. |
|
|
|
*/ |
|
|
|
static nir_ssa_def * |
|
|
|
get_ssa_def_for_block(struct deref_node *node, nir_block *block, |
|
|
|
struct lower_variables_state *state) |
|
|
@@ -696,6 +789,10 @@ get_ssa_def_for_block(struct deref_node *node, nir_block *block, |
|
|
|
return &undef->def; |
|
|
|
} |
|
|
|
|
|
|
|
/* Given a block and one of its predecessors, this function fills in the |
|
|
|
* souces of the phi nodes to take SSA defs from the given predecessor. |
|
|
|
* This function must be called exactly once per block/predecessor pair. |
|
|
|
*/ |
|
|
|
static void |
|
|
|
add_phi_sources(nir_block *block, nir_block *pred, |
|
|
|
struct lower_variables_state *state) |
|
|
@@ -724,6 +821,16 @@ add_phi_sources(nir_block *block, nir_block *pred, |
|
|
|
} |
|
|
|
} |
|
|
|
|
|
|
|
/* Performs variable renaming by doing a DFS of the dominance tree |
|
|
|
* |
|
|
|
* This algorithm is very similar to the one outlined in "Efficiently |
|
|
|
* Computing Static Single Assignment Form and the Control Dependence |
|
|
|
* Graph" by Cytron et. al. The primary difference is in how the stacks of |
|
|
|
* SSA definitions are handled. In the Cytron paper, they explicitly pop |
|
|
|
* the old elements off the stack after visiting the dominance children. |
|
|
|
* In our algorithm, popping old elements off the stack is implicitly |
|
|
|
* handled by get_ssa_def_for_block. |
|
|
|
*/ |
|
|
|
static bool |
|
|
|
rename_variables_block(nir_block *block, struct lower_variables_state *state) |
|
|
|
{ |
|
|
@@ -859,6 +966,12 @@ rename_variables_block(nir_block *block, struct lower_variables_state *state) |
|
|
|
return true; |
|
|
|
} |
|
|
|
|
|
|
|
/* Inserts phi nodes for all variables marked lower_to_ssa |
|
|
|
* |
|
|
|
* This is the same algorithm as presented in "Efficiently Computing Static |
|
|
|
* Single Assignment Form and the Control Dependence Graph" by Cytron et. |
|
|
|
* al. |
|
|
|
*/ |
|
|
|
static void |
|
|
|
insert_phi_nodes(struct lower_variables_state *state) |
|
|
|
{ |
|
|
@@ -948,7 +1061,7 @@ nir_lower_variables_impl(nir_function_impl *impl) |
|
|
|
_mesa_hash_pointer, |
|
|
|
_mesa_key_pointer_equal); |
|
|
|
|
|
|
|
nir_foreach_block(impl, fill_deref_tables_block, &state); |
|
|
|
nir_foreach_block(impl, register_variable_uses_block, &state); |
|
|
|
|
|
|
|
struct set *outputs = _mesa_set_create(state.dead_ctx, |
|
|
|
_mesa_key_pointer_equal); |