|
|
@@ -1,4 +1,4 @@ |
|
|
|
/* $Id: m_eval.c,v 1.3 2001/03/08 17:15:01 brianp Exp $ */ |
|
|
|
/* $Id: m_eval.c,v 1.4 2001/03/08 17:17:28 brianp Exp $ */ |
|
|
|
|
|
|
|
/* |
|
|
|
* Mesa 3-D graphics library |
|
|
@@ -72,32 +72,31 @@ static GLfloat inv_tab[MAX_EVAL_ORDER]; |
|
|
|
|
|
|
|
|
|
|
|
void |
|
|
|
_math_horner_bezier_curve(const GLfloat *cp, GLfloat *out, GLfloat t, |
|
|
|
_math_horner_bezier_curve(const GLfloat * cp, GLfloat * out, GLfloat t, |
|
|
|
GLuint dim, GLuint order) |
|
|
|
{ |
|
|
|
GLfloat s, powert, bincoeff; |
|
|
|
GLuint i, k; |
|
|
|
|
|
|
|
if(order >= 2) |
|
|
|
{ |
|
|
|
if (order >= 2) { |
|
|
|
bincoeff = (GLfloat) (order - 1); |
|
|
|
s = 1.0-t; |
|
|
|
s = 1.0 - t; |
|
|
|
|
|
|
|
for(k=0; k<dim; k++) |
|
|
|
out[k] = s*cp[k] + bincoeff*t*cp[dim+k]; |
|
|
|
for (k = 0; k < dim; k++) |
|
|
|
out[k] = s * cp[k] + bincoeff * t * cp[dim + k]; |
|
|
|
|
|
|
|
for(i=2, cp+=2*dim, powert=t*t; i<order; i++, powert*=t, cp +=dim) |
|
|
|
{ |
|
|
|
for (i = 2, cp += 2 * dim, powert = t * t; i < order; |
|
|
|
i++, powert *= t, cp += dim) { |
|
|
|
bincoeff *= (GLfloat) (order - i); |
|
|
|
bincoeff *= inv_tab[i]; |
|
|
|
|
|
|
|
for(k=0; k<dim; k++) |
|
|
|
out[k] = s*out[k] + bincoeff*powert*cp[k]; |
|
|
|
for (k = 0; k < dim; k++) |
|
|
|
out[k] = s * out[k] + bincoeff * powert * cp[k]; |
|
|
|
} |
|
|
|
} |
|
|
|
else /* order=1 -> constant curve */ |
|
|
|
{ |
|
|
|
for(k=0; k<dim; k++) |
|
|
|
else { /* order=1 -> constant curve */ |
|
|
|
|
|
|
|
for (k = 0; k < dim; k++) |
|
|
|
out[k] = cp[k]; |
|
|
|
} |
|
|
|
} |
|
|
@@ -117,69 +116,64 @@ _math_horner_bezier_curve(const GLfloat *cp, GLfloat *out, GLfloat t, |
|
|
|
*/ |
|
|
|
|
|
|
|
void |
|
|
|
_math_horner_bezier_surf(GLfloat *cn, GLfloat *out, GLfloat u, GLfloat v, |
|
|
|
_math_horner_bezier_surf(GLfloat * cn, GLfloat * out, GLfloat u, GLfloat v, |
|
|
|
GLuint dim, GLuint uorder, GLuint vorder) |
|
|
|
{ |
|
|
|
GLfloat *cp = cn + uorder*vorder*dim; |
|
|
|
GLuint i, uinc = vorder*dim; |
|
|
|
GLfloat *cp = cn + uorder * vorder * dim; |
|
|
|
GLuint i, uinc = vorder * dim; |
|
|
|
|
|
|
|
if(vorder > uorder) |
|
|
|
{ |
|
|
|
if(uorder >= 2) |
|
|
|
{ |
|
|
|
if (vorder > uorder) { |
|
|
|
if (uorder >= 2) { |
|
|
|
GLfloat s, poweru, bincoeff; |
|
|
|
GLuint j, k; |
|
|
|
|
|
|
|
/* Compute the control polygon for the surface-curve in u-direction */ |
|
|
|
for(j=0; j<vorder; j++) |
|
|
|
{ |
|
|
|
GLfloat *ucp = &cn[j*dim]; |
|
|
|
for (j = 0; j < vorder; j++) { |
|
|
|
GLfloat *ucp = &cn[j * dim]; |
|
|
|
|
|
|
|
/* Each control point is the point for parameter u on a */ |
|
|
|
/* curve defined by the control polygons in u-direction */ |
|
|
|
bincoeff = (GLfloat) (uorder - 1); |
|
|
|
s = 1.0-u; |
|
|
|
s = 1.0 - u; |
|
|
|
|
|
|
|
for(k=0; k<dim; k++) |
|
|
|
cp[j*dim+k] = s*ucp[k] + bincoeff*u*ucp[uinc+k]; |
|
|
|
for (k = 0; k < dim; k++) |
|
|
|
cp[j * dim + k] = s * ucp[k] + bincoeff * u * ucp[uinc + k]; |
|
|
|
|
|
|
|
for(i=2, ucp+=2*uinc, poweru=u*u; i<uorder; |
|
|
|
i++, poweru*=u, ucp +=uinc) |
|
|
|
{ |
|
|
|
for (i = 2, ucp += 2 * uinc, poweru = u * u; i < uorder; |
|
|
|
i++, poweru *= u, ucp += uinc) { |
|
|
|
bincoeff *= (GLfloat) (uorder - i); |
|
|
|
bincoeff *= inv_tab[i]; |
|
|
|
|
|
|
|
for(k=0; k<dim; k++) |
|
|
|
cp[j*dim+k] = s*cp[j*dim+k] + bincoeff*poweru*ucp[k]; |
|
|
|
for (k = 0; k < dim; k++) |
|
|
|
cp[j * dim + k] = |
|
|
|
s * cp[j * dim + k] + bincoeff * poweru * ucp[k]; |
|
|
|
} |
|
|
|
} |
|
|
|
|
|
|
|
/* Evaluate curve point in v */ |
|
|
|
_math_horner_bezier_curve(cp, out, v, dim, vorder); |
|
|
|
} |
|
|
|
else /* uorder=1 -> cn defines a curve in v */ |
|
|
|
else /* uorder=1 -> cn defines a curve in v */ |
|
|
|
_math_horner_bezier_curve(cn, out, v, dim, vorder); |
|
|
|
} |
|
|
|
else /* vorder <= uorder */ |
|
|
|
{ |
|
|
|
if(vorder > 1) |
|
|
|
{ |
|
|
|
else { /* vorder <= uorder */ |
|
|
|
|
|
|
|
if (vorder > 1) { |
|
|
|
GLuint i; |
|
|
|
|
|
|
|
/* Compute the control polygon for the surface-curve in u-direction */ |
|
|
|
for(i=0; i<uorder; i++, cn += uinc) |
|
|
|
{ |
|
|
|
for (i = 0; i < uorder; i++, cn += uinc) { |
|
|
|
/* For constant i all cn[i][j] (j=0..vorder) are located */ |
|
|
|
/* on consecutive memory locations, so we can use */ |
|
|
|
/* horner_bezier_curve to compute the control points */ |
|
|
|
|
|
|
|
_math_horner_bezier_curve(cn, &cp[i*dim], v, dim, vorder); |
|
|
|
_math_horner_bezier_curve(cn, &cp[i * dim], v, dim, vorder); |
|
|
|
} |
|
|
|
|
|
|
|
/* Evaluate curve point in u */ |
|
|
|
_math_horner_bezier_curve(cp, out, u, dim, uorder); |
|
|
|
} |
|
|
|
else /* vorder=1 -> cn defines a curve in u */ |
|
|
|
else /* vorder=1 -> cn defines a curve in u */ |
|
|
|
_math_horner_bezier_curve(cn, out, u, dim, uorder); |
|
|
|
} |
|
|
|
} |
|
|
@@ -199,15 +193,15 @@ _math_horner_bezier_surf(GLfloat *cn, GLfloat *out, GLfloat u, GLfloat v, |
|
|
|
*/ |
|
|
|
|
|
|
|
void |
|
|
|
_math_de_casteljau_surf(GLfloat *cn, GLfloat *out, GLfloat *du, GLfloat *dv, |
|
|
|
GLfloat u, GLfloat v, GLuint dim, |
|
|
|
_math_de_casteljau_surf(GLfloat * cn, GLfloat * out, GLfloat * du, |
|
|
|
GLfloat * dv, GLfloat u, GLfloat v, GLuint dim, |
|
|
|
GLuint uorder, GLuint vorder) |
|
|
|
{ |
|
|
|
GLfloat *dcn = cn + uorder*vorder*dim; |
|
|
|
GLfloat us = 1.0-u, vs = 1.0-v; |
|
|
|
GLfloat *dcn = cn + uorder * vorder * dim; |
|
|
|
GLfloat us = 1.0 - u, vs = 1.0 - v; |
|
|
|
GLuint h, i, j, k; |
|
|
|
GLuint minorder = uorder < vorder ? uorder : vorder; |
|
|
|
GLuint uinc = vorder*dim; |
|
|
|
GLuint uinc = vorder * dim; |
|
|
|
GLuint dcuinc = vorder; |
|
|
|
|
|
|
|
/* Each component is evaluated separately to save buffer space */ |
|
|
@@ -218,267 +212,234 @@ _math_de_casteljau_surf(GLfloat *cn, GLfloat *out, GLfloat *du, GLfloat *dv, |
|
|
|
|
|
|
|
#define CN(I,J,K) cn[(I)*uinc+(J)*dim+(K)] |
|
|
|
#define DCN(I, J) dcn[(I)*dcuinc+(J)] |
|
|
|
if(minorder < 3) |
|
|
|
{ |
|
|
|
if(uorder==vorder) |
|
|
|
{ |
|
|
|
for(k=0; k<dim; k++) |
|
|
|
{ |
|
|
|
if (minorder < 3) { |
|
|
|
if (uorder == vorder) { |
|
|
|
for (k = 0; k < dim; k++) { |
|
|
|
/* Derivative direction in u */ |
|
|
|
du[k] = vs*(CN(1,0,k) - CN(0,0,k)) + |
|
|
|
v*(CN(1,1,k) - CN(0,1,k)); |
|
|
|
du[k] = vs * (CN(1, 0, k) - CN(0, 0, k)) + |
|
|
|
v * (CN(1, 1, k) - CN(0, 1, k)); |
|
|
|
|
|
|
|
/* Derivative direction in v */ |
|
|
|
dv[k] = us*(CN(0,1,k) - CN(0,0,k)) + |
|
|
|
u*(CN(1,1,k) - CN(1,0,k)); |
|
|
|
dv[k] = us * (CN(0, 1, k) - CN(0, 0, k)) + |
|
|
|
u * (CN(1, 1, k) - CN(1, 0, k)); |
|
|
|
|
|
|
|
/* bilinear de Casteljau step */ |
|
|
|
out[k] = us*(vs*CN(0,0,k) + v*CN(0,1,k)) + |
|
|
|
u*(vs*CN(1,0,k) + v*CN(1,1,k)); |
|
|
|
out[k] = us * (vs * CN(0, 0, k) + v * CN(0, 1, k)) + |
|
|
|
u * (vs * CN(1, 0, k) + v * CN(1, 1, k)); |
|
|
|
} |
|
|
|
} |
|
|
|
else if(minorder == uorder) |
|
|
|
{ |
|
|
|
for(k=0; k<dim; k++) |
|
|
|
{ |
|
|
|
else if (minorder == uorder) { |
|
|
|
for (k = 0; k < dim; k++) { |
|
|
|
/* bilinear de Casteljau step */ |
|
|
|
DCN(1,0) = CN(1,0,k) - CN(0,0,k); |
|
|
|
DCN(0,0) = us*CN(0,0,k) + u*CN(1,0,k); |
|
|
|
DCN(1, 0) = CN(1, 0, k) - CN(0, 0, k); |
|
|
|
DCN(0, 0) = us * CN(0, 0, k) + u * CN(1, 0, k); |
|
|
|
|
|
|
|
for(j=0; j<vorder-1; j++) |
|
|
|
{ |
|
|
|
for (j = 0; j < vorder - 1; j++) { |
|
|
|
/* for the derivative in u */ |
|
|
|
DCN(1,j+1) = CN(1,j+1,k) - CN(0,j+1,k); |
|
|
|
DCN(1,j) = vs*DCN(1,j) + v*DCN(1,j+1); |
|
|
|
DCN(1, j + 1) = CN(1, j + 1, k) - CN(0, j + 1, k); |
|
|
|
DCN(1, j) = vs * DCN(1, j) + v * DCN(1, j + 1); |
|
|
|
|
|
|
|
/* for the `point' */ |
|
|
|
DCN(0,j+1) = us*CN(0,j+1,k) + u*CN(1,j+1,k); |
|
|
|
DCN(0,j) = vs*DCN(0,j) + v*DCN(0,j+1); |
|
|
|
DCN(0, j + 1) = us * CN(0, j + 1, k) + u * CN(1, j + 1, k); |
|
|
|
DCN(0, j) = vs * DCN(0, j) + v * DCN(0, j + 1); |
|
|
|
} |
|
|
|
|
|
|
|
/* remaining linear de Casteljau steps until the second last step */ |
|
|
|
for(h=minorder; h<vorder-1; h++) |
|
|
|
for(j=0; j<vorder-h; j++) |
|
|
|
{ |
|
|
|
for (h = minorder; h < vorder - 1; h++) |
|
|
|
for (j = 0; j < vorder - h; j++) { |
|
|
|
/* for the derivative in u */ |
|
|
|
DCN(1,j) = vs*DCN(1,j) + v*DCN(1,j+1); |
|
|
|
DCN(1, j) = vs * DCN(1, j) + v * DCN(1, j + 1); |
|
|
|
|
|
|
|
/* for the `point' */ |
|
|
|
DCN(0,j) = vs*DCN(0,j) + v*DCN(0,j+1); |
|
|
|
DCN(0, j) = vs * DCN(0, j) + v * DCN(0, j + 1); |
|
|
|
} |
|
|
|
|
|
|
|
/* derivative direction in v */ |
|
|
|
dv[k] = DCN(0,1) - DCN(0,0); |
|
|
|
dv[k] = DCN(0, 1) - DCN(0, 0); |
|
|
|
|
|
|
|
/* derivative direction in u */ |
|
|
|
du[k] = vs*DCN(1,0) + v*DCN(1,1); |
|
|
|
du[k] = vs * DCN(1, 0) + v * DCN(1, 1); |
|
|
|
|
|
|
|
/* last linear de Casteljau step */ |
|
|
|
out[k] = vs*DCN(0,0) + v*DCN(0,1); |
|
|
|
out[k] = vs * DCN(0, 0) + v * DCN(0, 1); |
|
|
|
} |
|
|
|
} |
|
|
|
else /* minorder == vorder */ |
|
|
|
{ |
|
|
|
for(k=0; k<dim; k++) |
|
|
|
{ |
|
|
|
else { /* minorder == vorder */ |
|
|
|
|
|
|
|
for (k = 0; k < dim; k++) { |
|
|
|
/* bilinear de Casteljau step */ |
|
|
|
DCN(0,1) = CN(0,1,k) - CN(0,0,k); |
|
|
|
DCN(0,0) = vs*CN(0,0,k) + v*CN(0,1,k); |
|
|
|
for(i=0; i<uorder-1; i++) |
|
|
|
{ |
|
|
|
DCN(0, 1) = CN(0, 1, k) - CN(0, 0, k); |
|
|
|
DCN(0, 0) = vs * CN(0, 0, k) + v * CN(0, 1, k); |
|
|
|
for (i = 0; i < uorder - 1; i++) { |
|
|
|
/* for the derivative in v */ |
|
|
|
DCN(i+1,1) = CN(i+1,1,k) - CN(i+1,0,k); |
|
|
|
DCN(i,1) = us*DCN(i,1) + u*DCN(i+1,1); |
|
|
|
DCN(i + 1, 1) = CN(i + 1, 1, k) - CN(i + 1, 0, k); |
|
|
|
DCN(i, 1) = us * DCN(i, 1) + u * DCN(i + 1, 1); |
|
|
|
|
|
|
|
/* for the `point' */ |
|
|
|
DCN(i+1,0) = vs*CN(i+1,0,k) + v*CN(i+1,1,k); |
|
|
|
DCN(i,0) = us*DCN(i,0) + u*DCN(i+1,0); |
|
|
|
DCN(i + 1, 0) = vs * CN(i + 1, 0, k) + v * CN(i + 1, 1, k); |
|
|
|
DCN(i, 0) = us * DCN(i, 0) + u * DCN(i + 1, 0); |
|
|
|
} |
|
|
|
|
|
|
|
/* remaining linear de Casteljau steps until the second last step */ |
|
|
|
for(h=minorder; h<uorder-1; h++) |
|
|
|
for(i=0; i<uorder-h; i++) |
|
|
|
{ |
|
|
|
for (h = minorder; h < uorder - 1; h++) |
|
|
|
for (i = 0; i < uorder - h; i++) { |
|
|
|
/* for the derivative in v */ |
|
|
|
DCN(i,1) = us*DCN(i,1) + u*DCN(i+1,1); |
|
|
|
DCN(i, 1) = us * DCN(i, 1) + u * DCN(i + 1, 1); |
|
|
|
|
|
|
|
/* for the `point' */ |
|
|
|
DCN(i,0) = us*DCN(i,0) + u*DCN(i+1,0); |
|
|
|
DCN(i, 0) = us * DCN(i, 0) + u * DCN(i + 1, 0); |
|
|
|
} |
|
|
|
|
|
|
|
/* derivative direction in u */ |
|
|
|
du[k] = DCN(1,0) - DCN(0,0); |
|
|
|
du[k] = DCN(1, 0) - DCN(0, 0); |
|
|
|
|
|
|
|
/* derivative direction in v */ |
|
|
|
dv[k] = us*DCN(0,1) + u*DCN(1,1); |
|
|
|
dv[k] = us * DCN(0, 1) + u * DCN(1, 1); |
|
|
|
|
|
|
|
/* last linear de Casteljau step */ |
|
|
|
out[k] = us*DCN(0,0) + u*DCN(1,0); |
|
|
|
out[k] = us * DCN(0, 0) + u * DCN(1, 0); |
|
|
|
} |
|
|
|
} |
|
|
|
} |
|
|
|
else if(uorder == vorder) |
|
|
|
{ |
|
|
|
for(k=0; k<dim; k++) |
|
|
|
{ |
|
|
|
else if (uorder == vorder) { |
|
|
|
for (k = 0; k < dim; k++) { |
|
|
|
/* first bilinear de Casteljau step */ |
|
|
|
for(i=0; i<uorder-1; i++) |
|
|
|
{ |
|
|
|
DCN(i,0) = us*CN(i,0,k) + u*CN(i+1,0,k); |
|
|
|
for(j=0; j<vorder-1; j++) |
|
|
|
{ |
|
|
|
DCN(i,j+1) = us*CN(i,j+1,k) + u*CN(i+1,j+1,k); |
|
|
|
DCN(i,j) = vs*DCN(i,j) + v*DCN(i,j+1); |
|
|
|
for (i = 0; i < uorder - 1; i++) { |
|
|
|
DCN(i, 0) = us * CN(i, 0, k) + u * CN(i + 1, 0, k); |
|
|
|
for (j = 0; j < vorder - 1; j++) { |
|
|
|
DCN(i, j + 1) = us * CN(i, j + 1, k) + u * CN(i + 1, j + 1, k); |
|
|
|
DCN(i, j) = vs * DCN(i, j) + v * DCN(i, j + 1); |
|
|
|
} |
|
|
|
} |
|
|
|
|
|
|
|
/* remaining bilinear de Casteljau steps until the second last step */ |
|
|
|
for(h=2; h<minorder-1; h++) |
|
|
|
for(i=0; i<uorder-h; i++) |
|
|
|
{ |
|
|
|
DCN(i,0) = us*DCN(i,0) + u*DCN(i+1,0); |
|
|
|
for(j=0; j<vorder-h; j++) |
|
|
|
{ |
|
|
|
DCN(i,j+1) = us*DCN(i,j+1) + u*DCN(i+1,j+1); |
|
|
|
DCN(i,j) = vs*DCN(i,j) + v*DCN(i,j+1); |
|
|
|
for (h = 2; h < minorder - 1; h++) |
|
|
|
for (i = 0; i < uorder - h; i++) { |
|
|
|
DCN(i, 0) = us * DCN(i, 0) + u * DCN(i + 1, 0); |
|
|
|
for (j = 0; j < vorder - h; j++) { |
|
|
|
DCN(i, j + 1) = us * DCN(i, j + 1) + u * DCN(i + 1, j + 1); |
|
|
|
DCN(i, j) = vs * DCN(i, j) + v * DCN(i, j + 1); |
|
|
|
} |
|
|
|
} |
|
|
|
|
|
|
|
/* derivative direction in u */ |
|
|
|
du[k] = vs*(DCN(1,0) - DCN(0,0)) + |
|
|
|
v*(DCN(1,1) - DCN(0,1)); |
|
|
|
du[k] = vs * (DCN(1, 0) - DCN(0, 0)) + v * (DCN(1, 1) - DCN(0, 1)); |
|
|
|
|
|
|
|
/* derivative direction in v */ |
|
|
|
dv[k] = us*(DCN(0,1) - DCN(0,0)) + |
|
|
|
u*(DCN(1,1) - DCN(1,0)); |
|
|
|
dv[k] = us * (DCN(0, 1) - DCN(0, 0)) + u * (DCN(1, 1) - DCN(1, 0)); |
|
|
|
|
|
|
|
/* last bilinear de Casteljau step */ |
|
|
|
out[k] = us*(vs*DCN(0,0) + v*DCN(0,1)) + |
|
|
|
u*(vs*DCN(1,0) + v*DCN(1,1)); |
|
|
|
out[k] = us * (vs * DCN(0, 0) + v * DCN(0, 1)) + |
|
|
|
u * (vs * DCN(1, 0) + v * DCN(1, 1)); |
|
|
|
} |
|
|
|
} |
|
|
|
else if(minorder == uorder) |
|
|
|
{ |
|
|
|
for(k=0; k<dim; k++) |
|
|
|
{ |
|
|
|
else if (minorder == uorder) { |
|
|
|
for (k = 0; k < dim; k++) { |
|
|
|
/* first bilinear de Casteljau step */ |
|
|
|
for(i=0; i<uorder-1; i++) |
|
|
|
{ |
|
|
|
DCN(i,0) = us*CN(i,0,k) + u*CN(i+1,0,k); |
|
|
|
for(j=0; j<vorder-1; j++) |
|
|
|
{ |
|
|
|
DCN(i,j+1) = us*CN(i,j+1,k) + u*CN(i+1,j+1,k); |
|
|
|
DCN(i,j) = vs*DCN(i,j) + v*DCN(i,j+1); |
|
|
|
for (i = 0; i < uorder - 1; i++) { |
|
|
|
DCN(i, 0) = us * CN(i, 0, k) + u * CN(i + 1, 0, k); |
|
|
|
for (j = 0; j < vorder - 1; j++) { |
|
|
|
DCN(i, j + 1) = us * CN(i, j + 1, k) + u * CN(i + 1, j + 1, k); |
|
|
|
DCN(i, j) = vs * DCN(i, j) + v * DCN(i, j + 1); |
|
|
|
} |
|
|
|
} |
|
|
|
|
|
|
|
/* remaining bilinear de Casteljau steps until the second last step */ |
|
|
|
for(h=2; h<minorder-1; h++) |
|
|
|
for(i=0; i<uorder-h; i++) |
|
|
|
{ |
|
|
|
DCN(i,0) = us*DCN(i,0) + u*DCN(i+1,0); |
|
|
|
for(j=0; j<vorder-h; j++) |
|
|
|
{ |
|
|
|
DCN(i,j+1) = us*DCN(i,j+1) + u*DCN(i+1,j+1); |
|
|
|
DCN(i,j) = vs*DCN(i,j) + v*DCN(i,j+1); |
|
|
|
for (h = 2; h < minorder - 1; h++) |
|
|
|
for (i = 0; i < uorder - h; i++) { |
|
|
|
DCN(i, 0) = us * DCN(i, 0) + u * DCN(i + 1, 0); |
|
|
|
for (j = 0; j < vorder - h; j++) { |
|
|
|
DCN(i, j + 1) = us * DCN(i, j + 1) + u * DCN(i + 1, j + 1); |
|
|
|
DCN(i, j) = vs * DCN(i, j) + v * DCN(i, j + 1); |
|
|
|
} |
|
|
|
} |
|
|
|
|
|
|
|
/* last bilinear de Casteljau step */ |
|
|
|
DCN(2,0) = DCN(1,0) - DCN(0,0); |
|
|
|
DCN(0,0) = us*DCN(0,0) + u*DCN(1,0); |
|
|
|
for(j=0; j<vorder-1; j++) |
|
|
|
{ |
|
|
|
DCN(2, 0) = DCN(1, 0) - DCN(0, 0); |
|
|
|
DCN(0, 0) = us * DCN(0, 0) + u * DCN(1, 0); |
|
|
|
for (j = 0; j < vorder - 1; j++) { |
|
|
|
/* for the derivative in u */ |
|
|
|
DCN(2,j+1) = DCN(1,j+1) - DCN(0,j+1); |
|
|
|
DCN(2,j) = vs*DCN(2,j) + v*DCN(2,j+1); |
|
|
|
|
|
|
|
DCN(2, j + 1) = DCN(1, j + 1) - DCN(0, j + 1); |
|
|
|
DCN(2, j) = vs * DCN(2, j) + v * DCN(2, j + 1); |
|
|
|
|
|
|
|
/* for the `point' */ |
|
|
|
DCN(0,j+1) = us*DCN(0,j+1 ) + u*DCN(1,j+1); |
|
|
|
DCN(0,j) = vs*DCN(0,j) + v*DCN(0,j+1); |
|
|
|
DCN(0, j + 1) = us * DCN(0, j + 1) + u * DCN(1, j + 1); |
|
|
|
DCN(0, j) = vs * DCN(0, j) + v * DCN(0, j + 1); |
|
|
|
} |
|
|
|
|
|
|
|
/* remaining linear de Casteljau steps until the second last step */ |
|
|
|
for(h=minorder; h<vorder-1; h++) |
|
|
|
for(j=0; j<vorder-h; j++) |
|
|
|
{ |
|
|
|
for (h = minorder; h < vorder - 1; h++) |
|
|
|
for (j = 0; j < vorder - h; j++) { |
|
|
|
/* for the derivative in u */ |
|
|
|
DCN(2,j) = vs*DCN(2,j) + v*DCN(2,j+1); |
|
|
|
|
|
|
|
DCN(2, j) = vs * DCN(2, j) + v * DCN(2, j + 1); |
|
|
|
|
|
|
|
/* for the `point' */ |
|
|
|
DCN(0,j) = vs*DCN(0,j) + v*DCN(0,j+1); |
|
|
|
DCN(0, j) = vs * DCN(0, j) + v * DCN(0, j + 1); |
|
|
|
} |
|
|
|
|
|
|
|
/* derivative direction in v */ |
|
|
|
dv[k] = DCN(0,1) - DCN(0,0); |
|
|
|
dv[k] = DCN(0, 1) - DCN(0, 0); |
|
|
|
|
|
|
|
/* derivative direction in u */ |
|
|
|
du[k] = vs*DCN(2,0) + v*DCN(2,1); |
|
|
|
du[k] = vs * DCN(2, 0) + v * DCN(2, 1); |
|
|
|
|
|
|
|
/* last linear de Casteljau step */ |
|
|
|
out[k] = vs*DCN(0,0) + v*DCN(0,1); |
|
|
|
out[k] = vs * DCN(0, 0) + v * DCN(0, 1); |
|
|
|
} |
|
|
|
} |
|
|
|
else /* minorder == vorder */ |
|
|
|
{ |
|
|
|
for(k=0; k<dim; k++) |
|
|
|
{ |
|
|
|
else { /* minorder == vorder */ |
|
|
|
|
|
|
|
for (k = 0; k < dim; k++) { |
|
|
|
/* first bilinear de Casteljau step */ |
|
|
|
for(i=0; i<uorder-1; i++) |
|
|
|
{ |
|
|
|
DCN(i,0) = us*CN(i,0,k) + u*CN(i+1,0,k); |
|
|
|
for(j=0; j<vorder-1; j++) |
|
|
|
{ |
|
|
|
DCN(i,j+1) = us*CN(i,j+1,k) + u*CN(i+1,j+1,k); |
|
|
|
DCN(i,j) = vs*DCN(i,j) + v*DCN(i,j+1); |
|
|
|
for (i = 0; i < uorder - 1; i++) { |
|
|
|
DCN(i, 0) = us * CN(i, 0, k) + u * CN(i + 1, 0, k); |
|
|
|
for (j = 0; j < vorder - 1; j++) { |
|
|
|
DCN(i, j + 1) = us * CN(i, j + 1, k) + u * CN(i + 1, j + 1, k); |
|
|
|
DCN(i, j) = vs * DCN(i, j) + v * DCN(i, j + 1); |
|
|
|
} |
|
|
|
} |
|
|
|
|
|
|
|
/* remaining bilinear de Casteljau steps until the second last step */ |
|
|
|
for(h=2; h<minorder-1; h++) |
|
|
|
for(i=0; i<uorder-h; i++) |
|
|
|
{ |
|
|
|
DCN(i,0) = us*DCN(i,0) + u*DCN(i+1,0); |
|
|
|
for(j=0; j<vorder-h; j++) |
|
|
|
{ |
|
|
|
DCN(i,j+1) = us*DCN(i,j+1) + u*DCN(i+1,j+1); |
|
|
|
DCN(i,j) = vs*DCN(i,j) + v*DCN(i,j+1); |
|
|
|
for (h = 2; h < minorder - 1; h++) |
|
|
|
for (i = 0; i < uorder - h; i++) { |
|
|
|
DCN(i, 0) = us * DCN(i, 0) + u * DCN(i + 1, 0); |
|
|
|
for (j = 0; j < vorder - h; j++) { |
|
|
|
DCN(i, j + 1) = us * DCN(i, j + 1) + u * DCN(i + 1, j + 1); |
|
|
|
DCN(i, j) = vs * DCN(i, j) + v * DCN(i, j + 1); |
|
|
|
} |
|
|
|
} |
|
|
|
|
|
|
|
/* last bilinear de Casteljau step */ |
|
|
|
DCN(0,2) = DCN(0,1) - DCN(0,0); |
|
|
|
DCN(0,0) = vs*DCN(0,0) + v*DCN(0,1); |
|
|
|
for(i=0; i<uorder-1; i++) |
|
|
|
{ |
|
|
|
DCN(0, 2) = DCN(0, 1) - DCN(0, 0); |
|
|
|
DCN(0, 0) = vs * DCN(0, 0) + v * DCN(0, 1); |
|
|
|
for (i = 0; i < uorder - 1; i++) { |
|
|
|
/* for the derivative in v */ |
|
|
|
DCN(i+1,2) = DCN(i+1,1) - DCN(i+1,0); |
|
|
|
DCN(i,2) = us*DCN(i,2) + u*DCN(i+1,2); |
|
|
|
|
|
|
|
DCN(i + 1, 2) = DCN(i + 1, 1) - DCN(i + 1, 0); |
|
|
|
DCN(i, 2) = us * DCN(i, 2) + u * DCN(i + 1, 2); |
|
|
|
|
|
|
|
/* for the `point' */ |
|
|
|
DCN(i+1,0) = vs*DCN(i+1,0) + v*DCN(i+1,1); |
|
|
|
DCN(i,0) = us*DCN(i,0) + u*DCN(i+1,0); |
|
|
|
DCN(i + 1, 0) = vs * DCN(i + 1, 0) + v * DCN(i + 1, 1); |
|
|
|
DCN(i, 0) = us * DCN(i, 0) + u * DCN(i + 1, 0); |
|
|
|
} |
|
|
|
|
|
|
|
/* remaining linear de Casteljau steps until the second last step */ |
|
|
|
for(h=minorder; h<uorder-1; h++) |
|
|
|
for(i=0; i<uorder-h; i++) |
|
|
|
{ |
|
|
|
for (h = minorder; h < uorder - 1; h++) |
|
|
|
for (i = 0; i < uorder - h; i++) { |
|
|
|
/* for the derivative in v */ |
|
|
|
DCN(i,2) = us*DCN(i,2) + u*DCN(i+1,2); |
|
|
|
|
|
|
|
DCN(i, 2) = us * DCN(i, 2) + u * DCN(i + 1, 2); |
|
|
|
|
|
|
|
/* for the `point' */ |
|
|
|
DCN(i,0) = us*DCN(i,0) + u*DCN(i+1,0); |
|
|
|
DCN(i, 0) = us * DCN(i, 0) + u * DCN(i + 1, 0); |
|
|
|
} |
|
|
|
|
|
|
|
/* derivative direction in u */ |
|
|
|
du[k] = DCN(1,0) - DCN(0,0); |
|
|
|
du[k] = DCN(1, 0) - DCN(0, 0); |
|
|
|
|
|
|
|
/* derivative direction in v */ |
|
|
|
dv[k] = us*DCN(0,2) + u*DCN(1,2); |
|
|
|
dv[k] = us * DCN(0, 2) + u * DCN(1, 2); |
|
|
|
|
|
|
|
/* last linear de Casteljau step */ |
|
|
|
out[k] = us*DCN(0,0) + u*DCN(1,0); |
|
|
|
out[k] = us * DCN(0, 0) + u * DCN(1, 0); |
|
|
|
} |
|
|
|
} |
|
|
|
#undef DCN |
|
|
@@ -489,13 +450,13 @@ _math_de_casteljau_surf(GLfloat *cn, GLfloat *out, GLfloat *du, GLfloat *dv, |
|
|
|
/* |
|
|
|
* Do one-time initialization for evaluators. |
|
|
|
*/ |
|
|
|
void _math_init_eval( void ) |
|
|
|
void |
|
|
|
_math_init_eval(void) |
|
|
|
{ |
|
|
|
GLuint i; |
|
|
|
|
|
|
|
/* KW: precompute 1/x for useful x. |
|
|
|
*/ |
|
|
|
for (i = 1 ; i < MAX_EVAL_ORDER ; i++) |
|
|
|
for (i = 1; i < MAX_EVAL_ORDER; i++) |
|
|
|
inv_tab[i] = 1.0 / i; |
|
|
|
} |
|
|
|
|