Browse Source

processed by indent to improve readability

tags/mesa_3_5
Brian Paul 24 years ago
parent
commit
896e8bd2d7
1 changed files with 161 additions and 200 deletions
  1. 161
    200
      src/mesa/math/m_eval.c

+ 161
- 200
src/mesa/math/m_eval.c View File

@@ -1,4 +1,4 @@
/* $Id: m_eval.c,v 1.3 2001/03/08 17:15:01 brianp Exp $ */
/* $Id: m_eval.c,v 1.4 2001/03/08 17:17:28 brianp Exp $ */

/*
* Mesa 3-D graphics library
@@ -72,32 +72,31 @@ static GLfloat inv_tab[MAX_EVAL_ORDER];


void
_math_horner_bezier_curve(const GLfloat *cp, GLfloat *out, GLfloat t,
_math_horner_bezier_curve(const GLfloat * cp, GLfloat * out, GLfloat t,
GLuint dim, GLuint order)
{
GLfloat s, powert, bincoeff;
GLuint i, k;

if(order >= 2)
{
if (order >= 2) {
bincoeff = (GLfloat) (order - 1);
s = 1.0-t;
s = 1.0 - t;

for(k=0; k<dim; k++)
out[k] = s*cp[k] + bincoeff*t*cp[dim+k];
for (k = 0; k < dim; k++)
out[k] = s * cp[k] + bincoeff * t * cp[dim + k];

for(i=2, cp+=2*dim, powert=t*t; i<order; i++, powert*=t, cp +=dim)
{
for (i = 2, cp += 2 * dim, powert = t * t; i < order;
i++, powert *= t, cp += dim) {
bincoeff *= (GLfloat) (order - i);
bincoeff *= inv_tab[i];

for(k=0; k<dim; k++)
out[k] = s*out[k] + bincoeff*powert*cp[k];
for (k = 0; k < dim; k++)
out[k] = s * out[k] + bincoeff * powert * cp[k];
}
}
else /* order=1 -> constant curve */
{
for(k=0; k<dim; k++)
else { /* order=1 -> constant curve */
for (k = 0; k < dim; k++)
out[k] = cp[k];
}
}
@@ -117,69 +116,64 @@ _math_horner_bezier_curve(const GLfloat *cp, GLfloat *out, GLfloat t,
*/

void
_math_horner_bezier_surf(GLfloat *cn, GLfloat *out, GLfloat u, GLfloat v,
_math_horner_bezier_surf(GLfloat * cn, GLfloat * out, GLfloat u, GLfloat v,
GLuint dim, GLuint uorder, GLuint vorder)
{
GLfloat *cp = cn + uorder*vorder*dim;
GLuint i, uinc = vorder*dim;
GLfloat *cp = cn + uorder * vorder * dim;
GLuint i, uinc = vorder * dim;

if(vorder > uorder)
{
if(uorder >= 2)
{
if (vorder > uorder) {
if (uorder >= 2) {
GLfloat s, poweru, bincoeff;
GLuint j, k;

/* Compute the control polygon for the surface-curve in u-direction */
for(j=0; j<vorder; j++)
{
GLfloat *ucp = &cn[j*dim];
for (j = 0; j < vorder; j++) {
GLfloat *ucp = &cn[j * dim];

/* Each control point is the point for parameter u on a */
/* curve defined by the control polygons in u-direction */
bincoeff = (GLfloat) (uorder - 1);
s = 1.0-u;
s = 1.0 - u;

for(k=0; k<dim; k++)
cp[j*dim+k] = s*ucp[k] + bincoeff*u*ucp[uinc+k];
for (k = 0; k < dim; k++)
cp[j * dim + k] = s * ucp[k] + bincoeff * u * ucp[uinc + k];

for(i=2, ucp+=2*uinc, poweru=u*u; i<uorder;
i++, poweru*=u, ucp +=uinc)
{
for (i = 2, ucp += 2 * uinc, poweru = u * u; i < uorder;
i++, poweru *= u, ucp += uinc) {
bincoeff *= (GLfloat) (uorder - i);
bincoeff *= inv_tab[i];

for(k=0; k<dim; k++)
cp[j*dim+k] = s*cp[j*dim+k] + bincoeff*poweru*ucp[k];
for (k = 0; k < dim; k++)
cp[j * dim + k] =
s * cp[j * dim + k] + bincoeff * poweru * ucp[k];
}
}

/* Evaluate curve point in v */
_math_horner_bezier_curve(cp, out, v, dim, vorder);
}
else /* uorder=1 -> cn defines a curve in v */
else /* uorder=1 -> cn defines a curve in v */
_math_horner_bezier_curve(cn, out, v, dim, vorder);
}
else /* vorder <= uorder */
{
if(vorder > 1)
{
else { /* vorder <= uorder */

if (vorder > 1) {
GLuint i;

/* Compute the control polygon for the surface-curve in u-direction */
for(i=0; i<uorder; i++, cn += uinc)
{
for (i = 0; i < uorder; i++, cn += uinc) {
/* For constant i all cn[i][j] (j=0..vorder) are located */
/* on consecutive memory locations, so we can use */
/* horner_bezier_curve to compute the control points */

_math_horner_bezier_curve(cn, &cp[i*dim], v, dim, vorder);
_math_horner_bezier_curve(cn, &cp[i * dim], v, dim, vorder);
}

/* Evaluate curve point in u */
_math_horner_bezier_curve(cp, out, u, dim, uorder);
}
else /* vorder=1 -> cn defines a curve in u */
else /* vorder=1 -> cn defines a curve in u */
_math_horner_bezier_curve(cn, out, u, dim, uorder);
}
}
@@ -199,15 +193,15 @@ _math_horner_bezier_surf(GLfloat *cn, GLfloat *out, GLfloat u, GLfloat v,
*/

void
_math_de_casteljau_surf(GLfloat *cn, GLfloat *out, GLfloat *du, GLfloat *dv,
GLfloat u, GLfloat v, GLuint dim,
_math_de_casteljau_surf(GLfloat * cn, GLfloat * out, GLfloat * du,
GLfloat * dv, GLfloat u, GLfloat v, GLuint dim,
GLuint uorder, GLuint vorder)
{
GLfloat *dcn = cn + uorder*vorder*dim;
GLfloat us = 1.0-u, vs = 1.0-v;
GLfloat *dcn = cn + uorder * vorder * dim;
GLfloat us = 1.0 - u, vs = 1.0 - v;
GLuint h, i, j, k;
GLuint minorder = uorder < vorder ? uorder : vorder;
GLuint uinc = vorder*dim;
GLuint uinc = vorder * dim;
GLuint dcuinc = vorder;

/* Each component is evaluated separately to save buffer space */
@@ -218,267 +212,234 @@ _math_de_casteljau_surf(GLfloat *cn, GLfloat *out, GLfloat *du, GLfloat *dv,

#define CN(I,J,K) cn[(I)*uinc+(J)*dim+(K)]
#define DCN(I, J) dcn[(I)*dcuinc+(J)]
if(minorder < 3)
{
if(uorder==vorder)
{
for(k=0; k<dim; k++)
{
if (minorder < 3) {
if (uorder == vorder) {
for (k = 0; k < dim; k++) {
/* Derivative direction in u */
du[k] = vs*(CN(1,0,k) - CN(0,0,k)) +
v*(CN(1,1,k) - CN(0,1,k));
du[k] = vs * (CN(1, 0, k) - CN(0, 0, k)) +
v * (CN(1, 1, k) - CN(0, 1, k));

/* Derivative direction in v */
dv[k] = us*(CN(0,1,k) - CN(0,0,k)) +
u*(CN(1,1,k) - CN(1,0,k));
dv[k] = us * (CN(0, 1, k) - CN(0, 0, k)) +
u * (CN(1, 1, k) - CN(1, 0, k));

/* bilinear de Casteljau step */
out[k] = us*(vs*CN(0,0,k) + v*CN(0,1,k)) +
u*(vs*CN(1,0,k) + v*CN(1,1,k));
out[k] = us * (vs * CN(0, 0, k) + v * CN(0, 1, k)) +
u * (vs * CN(1, 0, k) + v * CN(1, 1, k));
}
}
else if(minorder == uorder)
{
for(k=0; k<dim; k++)
{
else if (minorder == uorder) {
for (k = 0; k < dim; k++) {
/* bilinear de Casteljau step */
DCN(1,0) = CN(1,0,k) - CN(0,0,k);
DCN(0,0) = us*CN(0,0,k) + u*CN(1,0,k);
DCN(1, 0) = CN(1, 0, k) - CN(0, 0, k);
DCN(0, 0) = us * CN(0, 0, k) + u * CN(1, 0, k);

for(j=0; j<vorder-1; j++)
{
for (j = 0; j < vorder - 1; j++) {
/* for the derivative in u */
DCN(1,j+1) = CN(1,j+1,k) - CN(0,j+1,k);
DCN(1,j) = vs*DCN(1,j) + v*DCN(1,j+1);
DCN(1, j + 1) = CN(1, j + 1, k) - CN(0, j + 1, k);
DCN(1, j) = vs * DCN(1, j) + v * DCN(1, j + 1);

/* for the `point' */
DCN(0,j+1) = us*CN(0,j+1,k) + u*CN(1,j+1,k);
DCN(0,j) = vs*DCN(0,j) + v*DCN(0,j+1);
DCN(0, j + 1) = us * CN(0, j + 1, k) + u * CN(1, j + 1, k);
DCN(0, j) = vs * DCN(0, j) + v * DCN(0, j + 1);
}

/* remaining linear de Casteljau steps until the second last step */
for(h=minorder; h<vorder-1; h++)
for(j=0; j<vorder-h; j++)
{
for (h = minorder; h < vorder - 1; h++)
for (j = 0; j < vorder - h; j++) {
/* for the derivative in u */
DCN(1,j) = vs*DCN(1,j) + v*DCN(1,j+1);
DCN(1, j) = vs * DCN(1, j) + v * DCN(1, j + 1);

/* for the `point' */
DCN(0,j) = vs*DCN(0,j) + v*DCN(0,j+1);
DCN(0, j) = vs * DCN(0, j) + v * DCN(0, j + 1);
}

/* derivative direction in v */
dv[k] = DCN(0,1) - DCN(0,0);
dv[k] = DCN(0, 1) - DCN(0, 0);

/* derivative direction in u */
du[k] = vs*DCN(1,0) + v*DCN(1,1);
du[k] = vs * DCN(1, 0) + v * DCN(1, 1);

/* last linear de Casteljau step */
out[k] = vs*DCN(0,0) + v*DCN(0,1);
out[k] = vs * DCN(0, 0) + v * DCN(0, 1);
}
}
else /* minorder == vorder */
{
for(k=0; k<dim; k++)
{
else { /* minorder == vorder */

for (k = 0; k < dim; k++) {
/* bilinear de Casteljau step */
DCN(0,1) = CN(0,1,k) - CN(0,0,k);
DCN(0,0) = vs*CN(0,0,k) + v*CN(0,1,k);
for(i=0; i<uorder-1; i++)
{
DCN(0, 1) = CN(0, 1, k) - CN(0, 0, k);
DCN(0, 0) = vs * CN(0, 0, k) + v * CN(0, 1, k);
for (i = 0; i < uorder - 1; i++) {
/* for the derivative in v */
DCN(i+1,1) = CN(i+1,1,k) - CN(i+1,0,k);
DCN(i,1) = us*DCN(i,1) + u*DCN(i+1,1);
DCN(i + 1, 1) = CN(i + 1, 1, k) - CN(i + 1, 0, k);
DCN(i, 1) = us * DCN(i, 1) + u * DCN(i + 1, 1);

/* for the `point' */
DCN(i+1,0) = vs*CN(i+1,0,k) + v*CN(i+1,1,k);
DCN(i,0) = us*DCN(i,0) + u*DCN(i+1,0);
DCN(i + 1, 0) = vs * CN(i + 1, 0, k) + v * CN(i + 1, 1, k);
DCN(i, 0) = us * DCN(i, 0) + u * DCN(i + 1, 0);
}

/* remaining linear de Casteljau steps until the second last step */
for(h=minorder; h<uorder-1; h++)
for(i=0; i<uorder-h; i++)
{
for (h = minorder; h < uorder - 1; h++)
for (i = 0; i < uorder - h; i++) {
/* for the derivative in v */
DCN(i,1) = us*DCN(i,1) + u*DCN(i+1,1);
DCN(i, 1) = us * DCN(i, 1) + u * DCN(i + 1, 1);

/* for the `point' */
DCN(i,0) = us*DCN(i,0) + u*DCN(i+1,0);
DCN(i, 0) = us * DCN(i, 0) + u * DCN(i + 1, 0);
}

/* derivative direction in u */
du[k] = DCN(1,0) - DCN(0,0);
du[k] = DCN(1, 0) - DCN(0, 0);

/* derivative direction in v */
dv[k] = us*DCN(0,1) + u*DCN(1,1);
dv[k] = us * DCN(0, 1) + u * DCN(1, 1);

/* last linear de Casteljau step */
out[k] = us*DCN(0,0) + u*DCN(1,0);
out[k] = us * DCN(0, 0) + u * DCN(1, 0);
}
}
}
else if(uorder == vorder)
{
for(k=0; k<dim; k++)
{
else if (uorder == vorder) {
for (k = 0; k < dim; k++) {
/* first bilinear de Casteljau step */
for(i=0; i<uorder-1; i++)
{
DCN(i,0) = us*CN(i,0,k) + u*CN(i+1,0,k);
for(j=0; j<vorder-1; j++)
{
DCN(i,j+1) = us*CN(i,j+1,k) + u*CN(i+1,j+1,k);
DCN(i,j) = vs*DCN(i,j) + v*DCN(i,j+1);
for (i = 0; i < uorder - 1; i++) {
DCN(i, 0) = us * CN(i, 0, k) + u * CN(i + 1, 0, k);
for (j = 0; j < vorder - 1; j++) {
DCN(i, j + 1) = us * CN(i, j + 1, k) + u * CN(i + 1, j + 1, k);
DCN(i, j) = vs * DCN(i, j) + v * DCN(i, j + 1);
}
}

/* remaining bilinear de Casteljau steps until the second last step */
for(h=2; h<minorder-1; h++)
for(i=0; i<uorder-h; i++)
{
DCN(i,0) = us*DCN(i,0) + u*DCN(i+1,0);
for(j=0; j<vorder-h; j++)
{
DCN(i,j+1) = us*DCN(i,j+1) + u*DCN(i+1,j+1);
DCN(i,j) = vs*DCN(i,j) + v*DCN(i,j+1);
for (h = 2; h < minorder - 1; h++)
for (i = 0; i < uorder - h; i++) {
DCN(i, 0) = us * DCN(i, 0) + u * DCN(i + 1, 0);
for (j = 0; j < vorder - h; j++) {
DCN(i, j + 1) = us * DCN(i, j + 1) + u * DCN(i + 1, j + 1);
DCN(i, j) = vs * DCN(i, j) + v * DCN(i, j + 1);
}
}

/* derivative direction in u */
du[k] = vs*(DCN(1,0) - DCN(0,0)) +
v*(DCN(1,1) - DCN(0,1));
du[k] = vs * (DCN(1, 0) - DCN(0, 0)) + v * (DCN(1, 1) - DCN(0, 1));

/* derivative direction in v */
dv[k] = us*(DCN(0,1) - DCN(0,0)) +
u*(DCN(1,1) - DCN(1,0));
dv[k] = us * (DCN(0, 1) - DCN(0, 0)) + u * (DCN(1, 1) - DCN(1, 0));

/* last bilinear de Casteljau step */
out[k] = us*(vs*DCN(0,0) + v*DCN(0,1)) +
u*(vs*DCN(1,0) + v*DCN(1,1));
out[k] = us * (vs * DCN(0, 0) + v * DCN(0, 1)) +
u * (vs * DCN(1, 0) + v * DCN(1, 1));
}
}
else if(minorder == uorder)
{
for(k=0; k<dim; k++)
{
else if (minorder == uorder) {
for (k = 0; k < dim; k++) {
/* first bilinear de Casteljau step */
for(i=0; i<uorder-1; i++)
{
DCN(i,0) = us*CN(i,0,k) + u*CN(i+1,0,k);
for(j=0; j<vorder-1; j++)
{
DCN(i,j+1) = us*CN(i,j+1,k) + u*CN(i+1,j+1,k);
DCN(i,j) = vs*DCN(i,j) + v*DCN(i,j+1);
for (i = 0; i < uorder - 1; i++) {
DCN(i, 0) = us * CN(i, 0, k) + u * CN(i + 1, 0, k);
for (j = 0; j < vorder - 1; j++) {
DCN(i, j + 1) = us * CN(i, j + 1, k) + u * CN(i + 1, j + 1, k);
DCN(i, j) = vs * DCN(i, j) + v * DCN(i, j + 1);
}
}

/* remaining bilinear de Casteljau steps until the second last step */
for(h=2; h<minorder-1; h++)
for(i=0; i<uorder-h; i++)
{
DCN(i,0) = us*DCN(i,0) + u*DCN(i+1,0);
for(j=0; j<vorder-h; j++)
{
DCN(i,j+1) = us*DCN(i,j+1) + u*DCN(i+1,j+1);
DCN(i,j) = vs*DCN(i,j) + v*DCN(i,j+1);
for (h = 2; h < minorder - 1; h++)
for (i = 0; i < uorder - h; i++) {
DCN(i, 0) = us * DCN(i, 0) + u * DCN(i + 1, 0);
for (j = 0; j < vorder - h; j++) {
DCN(i, j + 1) = us * DCN(i, j + 1) + u * DCN(i + 1, j + 1);
DCN(i, j) = vs * DCN(i, j) + v * DCN(i, j + 1);
}
}

/* last bilinear de Casteljau step */
DCN(2,0) = DCN(1,0) - DCN(0,0);
DCN(0,0) = us*DCN(0,0) + u*DCN(1,0);
for(j=0; j<vorder-1; j++)
{
DCN(2, 0) = DCN(1, 0) - DCN(0, 0);
DCN(0, 0) = us * DCN(0, 0) + u * DCN(1, 0);
for (j = 0; j < vorder - 1; j++) {
/* for the derivative in u */
DCN(2,j+1) = DCN(1,j+1) - DCN(0,j+1);
DCN(2,j) = vs*DCN(2,j) + v*DCN(2,j+1);
DCN(2, j + 1) = DCN(1, j + 1) - DCN(0, j + 1);
DCN(2, j) = vs * DCN(2, j) + v * DCN(2, j + 1);
/* for the `point' */
DCN(0,j+1) = us*DCN(0,j+1 ) + u*DCN(1,j+1);
DCN(0,j) = vs*DCN(0,j) + v*DCN(0,j+1);
DCN(0, j + 1) = us * DCN(0, j + 1) + u * DCN(1, j + 1);
DCN(0, j) = vs * DCN(0, j) + v * DCN(0, j + 1);
}

/* remaining linear de Casteljau steps until the second last step */
for(h=minorder; h<vorder-1; h++)
for(j=0; j<vorder-h; j++)
{
for (h = minorder; h < vorder - 1; h++)
for (j = 0; j < vorder - h; j++) {
/* for the derivative in u */
DCN(2,j) = vs*DCN(2,j) + v*DCN(2,j+1);
DCN(2, j) = vs * DCN(2, j) + v * DCN(2, j + 1);
/* for the `point' */
DCN(0,j) = vs*DCN(0,j) + v*DCN(0,j+1);
DCN(0, j) = vs * DCN(0, j) + v * DCN(0, j + 1);
}

/* derivative direction in v */
dv[k] = DCN(0,1) - DCN(0,0);
dv[k] = DCN(0, 1) - DCN(0, 0);

/* derivative direction in u */
du[k] = vs*DCN(2,0) + v*DCN(2,1);
du[k] = vs * DCN(2, 0) + v * DCN(2, 1);

/* last linear de Casteljau step */
out[k] = vs*DCN(0,0) + v*DCN(0,1);
out[k] = vs * DCN(0, 0) + v * DCN(0, 1);
}
}
else /* minorder == vorder */
{
for(k=0; k<dim; k++)
{
else { /* minorder == vorder */

for (k = 0; k < dim; k++) {
/* first bilinear de Casteljau step */
for(i=0; i<uorder-1; i++)
{
DCN(i,0) = us*CN(i,0,k) + u*CN(i+1,0,k);
for(j=0; j<vorder-1; j++)
{
DCN(i,j+1) = us*CN(i,j+1,k) + u*CN(i+1,j+1,k);
DCN(i,j) = vs*DCN(i,j) + v*DCN(i,j+1);
for (i = 0; i < uorder - 1; i++) {
DCN(i, 0) = us * CN(i, 0, k) + u * CN(i + 1, 0, k);
for (j = 0; j < vorder - 1; j++) {
DCN(i, j + 1) = us * CN(i, j + 1, k) + u * CN(i + 1, j + 1, k);
DCN(i, j) = vs * DCN(i, j) + v * DCN(i, j + 1);
}
}

/* remaining bilinear de Casteljau steps until the second last step */
for(h=2; h<minorder-1; h++)
for(i=0; i<uorder-h; i++)
{
DCN(i,0) = us*DCN(i,0) + u*DCN(i+1,0);
for(j=0; j<vorder-h; j++)
{
DCN(i,j+1) = us*DCN(i,j+1) + u*DCN(i+1,j+1);
DCN(i,j) = vs*DCN(i,j) + v*DCN(i,j+1);
for (h = 2; h < minorder - 1; h++)
for (i = 0; i < uorder - h; i++) {
DCN(i, 0) = us * DCN(i, 0) + u * DCN(i + 1, 0);
for (j = 0; j < vorder - h; j++) {
DCN(i, j + 1) = us * DCN(i, j + 1) + u * DCN(i + 1, j + 1);
DCN(i, j) = vs * DCN(i, j) + v * DCN(i, j + 1);
}
}

/* last bilinear de Casteljau step */
DCN(0,2) = DCN(0,1) - DCN(0,0);
DCN(0,0) = vs*DCN(0,0) + v*DCN(0,1);
for(i=0; i<uorder-1; i++)
{
DCN(0, 2) = DCN(0, 1) - DCN(0, 0);
DCN(0, 0) = vs * DCN(0, 0) + v * DCN(0, 1);
for (i = 0; i < uorder - 1; i++) {
/* for the derivative in v */
DCN(i+1,2) = DCN(i+1,1) - DCN(i+1,0);
DCN(i,2) = us*DCN(i,2) + u*DCN(i+1,2);
DCN(i + 1, 2) = DCN(i + 1, 1) - DCN(i + 1, 0);
DCN(i, 2) = us * DCN(i, 2) + u * DCN(i + 1, 2);
/* for the `point' */
DCN(i+1,0) = vs*DCN(i+1,0) + v*DCN(i+1,1);
DCN(i,0) = us*DCN(i,0) + u*DCN(i+1,0);
DCN(i + 1, 0) = vs * DCN(i + 1, 0) + v * DCN(i + 1, 1);
DCN(i, 0) = us * DCN(i, 0) + u * DCN(i + 1, 0);
}

/* remaining linear de Casteljau steps until the second last step */
for(h=minorder; h<uorder-1; h++)
for(i=0; i<uorder-h; i++)
{
for (h = minorder; h < uorder - 1; h++)
for (i = 0; i < uorder - h; i++) {
/* for the derivative in v */
DCN(i,2) = us*DCN(i,2) + u*DCN(i+1,2);
DCN(i, 2) = us * DCN(i, 2) + u * DCN(i + 1, 2);
/* for the `point' */
DCN(i,0) = us*DCN(i,0) + u*DCN(i+1,0);
DCN(i, 0) = us * DCN(i, 0) + u * DCN(i + 1, 0);
}

/* derivative direction in u */
du[k] = DCN(1,0) - DCN(0,0);
du[k] = DCN(1, 0) - DCN(0, 0);

/* derivative direction in v */
dv[k] = us*DCN(0,2) + u*DCN(1,2);
dv[k] = us * DCN(0, 2) + u * DCN(1, 2);

/* last linear de Casteljau step */
out[k] = us*DCN(0,0) + u*DCN(1,0);
out[k] = us * DCN(0, 0) + u * DCN(1, 0);
}
}
#undef DCN
@@ -489,13 +450,13 @@ _math_de_casteljau_surf(GLfloat *cn, GLfloat *out, GLfloat *du, GLfloat *dv,
/*
* Do one-time initialization for evaluators.
*/
void _math_init_eval( void )
void
_math_init_eval(void)
{
GLuint i;

/* KW: precompute 1/x for useful x.
*/
for (i = 1 ; i < MAX_EVAL_ORDER ; i++)
for (i = 1; i < MAX_EVAL_ORDER; i++)
inv_tab[i] = 1.0 / i;
}


Loading…
Cancel
Save