Преглед изворни кода

ir3/lower_io_offsets: Try propagate SSBO's SHR into a previous shift instruction

While we lack value range tracking, this patch tries to 'manually' propogate
the division by 4 to calculate SSBO element-offset, into a possible previous
shift operation (shift left or right); checking that it is safe to do so.

This should help in cases like ie. when accessing a field in an array of
structs, where the offset is likely defined as base plus a multiplication
by a struct or array element size.

See dEQP test 'dEQP-GLES31.functional.ssbo.atomic.xor.highp_uint'
for an example of a shader that benefits from this.

Reviewed-by: Rob Clark <robdclark@gmail.com>
tags/19.1-branchpoint
Eduardo Lima Mitev пре 6 година
родитељ
комит
759ceda07e
1 измењених фајлова са 94 додато и 4 уклоњено
  1. 94
    4
      src/freedreno/ir3/ir3_nir_lower_io_offsets.c

+ 94
- 4
src/freedreno/ir3/ir3_nir_lower_io_offsets.c Прегледај датотеку

@@ -83,6 +83,81 @@ get_ir3_intrinsic_for_ssbo_intrinsic(unsigned intrinsic,
return -1;
}

static nir_ssa_def *
check_and_propagate_bit_shift32(nir_builder *b, nir_ssa_def *offset,
nir_alu_instr *alu_instr, int32_t direction,
int32_t shift)
{
debug_assert(alu_instr->src[1].src.is_ssa);
nir_ssa_def *shift_ssa = alu_instr->src[1].src.ssa;

/* Only propagate if the shift is a const value so we can check value range
* statically.
*/
nir_const_value *const_val = nir_src_as_const_value(alu_instr->src[1].src);
if (!const_val)
return NULL;

int32_t current_shift = const_val->i32[0] * direction;
int32_t new_shift = current_shift + shift;

/* If the merge would reverse the direction, bail out.
* e.g, 'x << 2' then 'x >> 4' is not 'x >> 2'.
*/
if (current_shift * new_shift < 0)
return NULL;

/* If the propagation would overflow an int32_t, bail out too to be on the
* safe side.
*/
if (new_shift < -31 || new_shift > 31)
return NULL;

b->cursor = nir_before_instr(&alu_instr->instr);

/* Add or substract shift depending on the final direction (SHR vs. SHL). */
if (shift * direction < 0)
shift_ssa = nir_isub(b, shift_ssa, nir_imm_int(b, abs(shift)));
else
shift_ssa = nir_iadd(b, shift_ssa, nir_imm_int(b, abs(shift)));

return shift_ssa;
}

static nir_ssa_def *
try_propagate_bit_shift(nir_builder *b, nir_ssa_def *offset, int32_t shift)
{
nir_instr *offset_instr = offset->parent_instr;
if (offset_instr->type != nir_instr_type_alu)
return NULL;

nir_alu_instr *alu = nir_instr_as_alu(offset_instr);
nir_ssa_def *shift_ssa;
nir_ssa_def *new_offset = NULL;

switch (alu->op) {
case nir_op_ishl:
shift_ssa = check_and_propagate_bit_shift32(b, offset, alu, 1, shift);
if (shift_ssa)
new_offset = nir_ishl(b, alu->src[0].src.ssa, shift_ssa);
break;
case nir_op_ishr:
shift_ssa = check_and_propagate_bit_shift32(b, offset, alu, -1, shift);
if (shift_ssa)
new_offset = nir_ishr(b, alu->src[0].src.ssa, shift_ssa);
break;
case nir_op_ushr:
shift_ssa = check_and_propagate_bit_shift32(b, offset, alu, -1, shift);
if (shift_ssa)
new_offset = nir_ushr(b, alu->src[0].src.ssa, shift_ssa);
break;
default:
return NULL;
}

return new_offset;
}

static bool
lower_offset_for_ssbo(nir_intrinsic_instr *intrinsic, nir_builder *b,
unsigned ir3_ssbo_opcode, uint8_t offset_src_idx)
@@ -104,6 +179,16 @@ lower_offset_for_ssbo(nir_intrinsic_instr *intrinsic, nir_builder *b,
debug_assert(intrinsic->src[offset_src_idx].is_ssa);
nir_ssa_def *offset = intrinsic->src[offset_src_idx].ssa;

/* Since we don't have value range checking, we first try to propagate
* the division by 4 ('offset >> 2') into another bit-shift instruction that
* possibly defines the offset. If that's the case, we emit a similar
* instructions adjusting (merging) the shift value.
*
* Here we use the convention that shifting right is negative while shifting
* left is positive. So 'x / 4' ~ 'x >> 2' or 'x << -2'.
*/
nir_ssa_def *new_offset = try_propagate_bit_shift(b, offset, -2);

/* The new source that will hold the dword-offset is always the last
* one for every intrinsic.
*/
@@ -127,11 +212,16 @@ lower_offset_for_ssbo(nir_intrinsic_instr *intrinsic, nir_builder *b,
new_intrinsic->num_components = intrinsic->num_components;

b->cursor = nir_before_instr(&intrinsic->instr);
nir_ssa_def *offset_div_4 = nir_ushr(b, offset, nir_imm_int(b, 2));
debug_assert(offset_div_4);

/* If we managed to propagate the division by 4, just use the new offset
* register and don't emit the SHR.
*/
if (new_offset)
offset = new_offset;
else
offset = nir_ushr(b, offset, nir_imm_int(b, 2));

/* Insert the new intrinsic right before the old one. */
b->cursor = nir_before_instr(&intrinsic->instr);
nir_builder_instr_insert(b, &new_intrinsic->instr);

/* Replace the last source of the new intrinsic by the result of
@@ -139,7 +229,7 @@ lower_offset_for_ssbo(nir_intrinsic_instr *intrinsic, nir_builder *b,
*/
nir_instr_rewrite_src(&new_intrinsic->instr,
target_src,
nir_src_for_ssa(offset_div_4));
nir_src_for_ssa(offset));

if (has_dest) {
/* Replace the uses of the original destination by that

Loading…
Откажи
Сачувај