Browse Source

llvmpipe: Remove lp_test_sincos.

Completely replaced by lp_test_arit.
tags/i965-primitive-restart-v2
José Fonseca 13 years ago
parent
commit
6fd62c998a

+ 0
- 1
src/gallium/drivers/llvmpipe/.gitignore View File

@@ -5,4 +5,3 @@ lp_test_conv
lp_test_format
lp_test_printf
lp_test_round
lp_test_sincos

+ 1
- 4
src/gallium/drivers/llvmpipe/Makefile View File

@@ -55,16 +55,13 @@ PROGS := lp_test_format \
lp_test_blend \
lp_test_conv \
lp_test_printf \
lp_test_round \
lp_test_sincos
lp_test_round

# Need this for the lp_test_*.o files
CLEAN_EXTRA = *.o

include ../../Makefile.template

lp_test_sincos.o : sse_mathfun.h

PROGS_DEPS := ../../auxiliary/libgallium.a

lp_tile_soa.c: lp_tile_soa.py ../../auxiliary/util/u_format_parse.py ../../auxiliary/util/u_format_pack.py ../../auxiliary/util/u_format.csv

+ 0
- 1
src/gallium/drivers/llvmpipe/SConscript View File

@@ -89,7 +89,6 @@ if not env['embedded']:
'blend',
'conv',
'printf',
'sincos',
]

if not env['msvc']:

+ 7
- 8
src/gallium/drivers/llvmpipe/lp_test_round.c View File

@@ -50,8 +50,7 @@ write_tsv_header(FILE *fp)

#ifdef PIPE_ARCH_SSE

#define USE_SSE2
#include "sse_mathfun.h"
# include <emmintrin.h>

typedef __m128 (*test_round_t)(__m128);

@@ -87,16 +86,16 @@ add_test(struct gallivm_state *gallivm, const char *name, lp_func_t lp_func)
}

static void
printv(char* string, v4sf value)
printv(char* string, __m128 value)
{
v4sf v = value;
__m128 v = value;
float *f = (float *)&v;
printf("%s: %10f %10f %10f %10f\n", string,
f[0], f[1], f[2], f[3]);
}

static boolean
compare(v4sf x, v4sf y)
compare(__m128 x, __m128 y)
{
boolean success = TRUE;
float *xp = (float *) &x;
@@ -152,13 +151,13 @@ test_round(struct gallivm_state *gallivm, unsigned verbose, FILE *fp)
/* NOTE: There are several acceptable rules for x.5 rounding: ceiling,
* nearest even, etc. So we avoid testing such corner cases here.
*/
v4sf xvals[3] = {
__m128 xvals[3] = {
{-10.0, -1, 0, 12.0},
{-1.49, -0.25, 1.25, 2.51},
{-0.99, -0.01, 0.01, 0.99}
};
v4sf x = xvals[i];
v4sf y, ref;
__m128 x = xvals[i];
__m128 y, ref;
float *xp = (float *) &x;
float *refp = (float *) &ref;


+ 0
- 171
src/gallium/drivers/llvmpipe/lp_test_sincos.c View File

@@ -1,171 +0,0 @@
/**************************************************************************
*
* Copyright 2010 VMware, Inc.
* All Rights Reserved.
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the
* "Software"), to deal in the Software without restriction, including
* without limitation the rights to use, copy, modify, merge, publish,
* distribute, sub license, and/or sell copies of the Software, and to
* permit persons to whom the Software is furnished to do so, subject to
* the following conditions:
*
* The above copyright notice and this permission notice (including the
* next paragraph) shall be included in all copies or substantial portions
* of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
* OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT.
* IN NO EVENT SHALL VMWARE AND/OR ITS SUPPLIERS BE LIABLE FOR
* ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
*
**************************************************************************/


#include <stdlib.h>
#include <stdio.h>

#include "util/u_pointer.h"

#include "gallivm/lp_bld.h"
#include "gallivm/lp_bld_init.h"
#include "gallivm/lp_bld_arit.h"

#include "lp_test.h"


void
write_tsv_header(FILE *fp)
{
fprintf(fp,
"result\t"
"format\n");

fflush(fp);
}


#ifdef PIPE_ARCH_SSE

#define USE_SSE2
#include "sse_mathfun.h"

typedef __m128 (*test_sincos_t)(__m128);

static LLVMValueRef
add_sincos_test(struct gallivm_state *gallivm, LLVMModuleRef module,
LLVMContextRef context, boolean sin)
{
LLVMTypeRef v4sf = LLVMVectorType(LLVMFloatTypeInContext(context), 4);
LLVMTypeRef args[1] = { v4sf };
LLVMValueRef func = LLVMAddFunction(module, "sincos", LLVMFunctionType(v4sf, args, 1, 0));
LLVMValueRef arg1 = LLVMGetParam(func, 0);
LLVMBuilderRef builder = gallivm->builder;
LLVMBasicBlockRef block = LLVMAppendBasicBlockInContext(context, func, "entry");
LLVMValueRef ret;
struct lp_build_context bld;

lp_build_context_init(&bld, gallivm, lp_float32_vec4_type());

LLVMSetFunctionCallConv(func, LLVMCCallConv);

LLVMPositionBuilderAtEnd(builder, block);
ret = sin ? lp_build_sin(&bld, arg1) : lp_build_cos(&bld, arg1);
LLVMBuildRet(builder, ret);
return func;
}

static void
printv(char* string, v4sf value)
{
v4sf v = value;
uint32_t *p = (uint32_t *) &v;
float *f = (float *)&v;
printf("%s: %f(%x) %f(%x) %f(%x) %f(%x)\n", string,
f[0], p[0], f[1], p[1], f[2], p[2], f[3], p[3]);
}

PIPE_ALIGN_STACK
static boolean
test_sincos(struct gallivm_state *gallivm, unsigned verbose, FILE *fp)
{
LLVMModuleRef module = gallivm->module;
LLVMValueRef test_sin = NULL, test_cos = NULL;
LLVMExecutionEngineRef engine = gallivm->engine;
LLVMContextRef context = gallivm->context;
char *error = NULL;
test_sincos_t sin_func;
test_sincos_t cos_func;
float unpacked[4];
boolean success = TRUE;

test_sin = add_sincos_test(gallivm, module, context, TRUE);
test_cos = add_sincos_test(gallivm, module, context,FALSE);

if(LLVMVerifyModule(module, LLVMPrintMessageAction, &error)) {
printf("LLVMVerifyModule: %s\n", error);
LLVMDumpModule(module);
abort();
}
LLVMDisposeMessage(error);

sin_func = (test_sincos_t) pointer_to_func(LLVMGetPointerToGlobal(engine, test_sin));
cos_func = (test_sincos_t) pointer_to_func(LLVMGetPointerToGlobal(engine, test_cos));

memset(unpacked, 0, sizeof unpacked);


// LLVMDumpModule(module);
{
v4sf src = {3.14159/4.0, -3.14159/4.0, 1.0, -1.0};
printv("ref ",sin_ps(src));
printv("llvm", sin_func(src));
printv("ref ",cos_ps(src));
printv("llvm",cos_func(src));
}

LLVMFreeMachineCodeForFunction(engine, test_sin);
LLVMFreeMachineCodeForFunction(engine, test_cos);

return success;
}

#else /* !PIPE_ARCH_SSE */

static boolean
test_sincos(struct gallivm_state *gallivm, unsigned verbose, FILE *fp)
{
return TRUE;
}

#endif /* !PIPE_ARCH_SSE */


boolean
test_all(struct gallivm_state *gallivm, unsigned verbose, FILE *fp)
{
boolean success = TRUE;

test_sincos(gallivm, verbose, fp);

return success;
}


boolean
test_some(struct gallivm_state *gallivm, unsigned verbose, FILE *fp,
unsigned long n)
{
return test_all(gallivm, verbose, fp);
}

boolean
test_single(struct gallivm_state *gallivm, unsigned verbose, FILE *fp)
{
printf("no test_single()");
return TRUE;
}

+ 0
- 724
src/gallium/drivers/llvmpipe/sse_mathfun.h View File

@@ -1,724 +0,0 @@
/* SIMD (SSE1+MMX or SSE2) implementation of sin, cos, exp and log

Inspired by Intel Approximate Math library, and based on the
corresponding algorithms of the cephes math library

The default is to use the SSE1 version. If you define USE_SSE2 the
the SSE2 intrinsics will be used in place of the MMX intrinsics. Do
not expect any significant performance improvement with SSE2.
*/

/* Copyright (C) 2007 Julien Pommier

This software is provided 'as-is', without any express or implied
warranty. In no event will the authors be held liable for any damages
arising from the use of this software.

Permission is granted to anyone to use this software for any purpose,
including commercial applications, and to alter it and redistribute it
freely, subject to the following restrictions:

1. The origin of this software must not be misrepresented; you must not
claim that you wrote the original software. If you use this software
in a product, an acknowledgment in the product documentation would be
appreciated but is not required.
2. Altered source versions must be plainly marked as such, and must not be
misrepresented as being the original software.
3. This notice may not be removed or altered from any source distribution.

(this is the zlib license)
*/

#include <xmmintrin.h>

/* yes I know, the top of this file is quite ugly */

#ifdef _MSC_VER /* visual c++ */
# define ALIGN16_BEG __declspec(align(16))
# define ALIGN16_END
#else /* gcc or icc */
# define ALIGN16_BEG
# define ALIGN16_END __attribute__((aligned(16)))
#endif

/* __m128 is ugly to write */
typedef __m128 v4sf; // vector of 4 float (sse1)

#ifdef USE_SSE2
# include <emmintrin.h>
typedef __m128i v4si; // vector of 4 int (sse2)
#else
typedef __m64 v2si; // vector of 2 int (mmx)
#endif

/* declare some SSE constants -- why can't I figure a better way to do that? */
#define _PS_CONST(Name, Val) \
static const ALIGN16_BEG float _ps_##Name[4] ALIGN16_END = { Val, Val, Val, Val }
#define _PI32_CONST(Name, Val) \
static const ALIGN16_BEG int _pi32_##Name[4] ALIGN16_END = { Val, Val, Val, Val }
#define _PS_CONST_TYPE(Name, Type, Val) \
static const ALIGN16_BEG Type _ps_##Name[4] ALIGN16_END = { Val, Val, Val, Val }

_PS_CONST(1 , 1.0f);
_PS_CONST(0p5, 0.5f);
/* the smallest non denormalized float number */
_PS_CONST_TYPE(min_norm_pos, int, 0x00800000);
_PS_CONST_TYPE(mant_mask, int, 0x7f800000);
_PS_CONST_TYPE(inv_mant_mask, int, ~0x7f800000);

_PS_CONST_TYPE(sign_mask, int, 0x80000000);
_PS_CONST_TYPE(inv_sign_mask, int, ~0x80000000);

_PI32_CONST(1, 1);
_PI32_CONST(inv1, ~1);
_PI32_CONST(2, 2);
_PI32_CONST(4, 4);
_PI32_CONST(0x7f, 0x7f);

_PS_CONST(cephes_SQRTHF, 0.707106781186547524);
_PS_CONST(cephes_log_p0, 7.0376836292E-2);
_PS_CONST(cephes_log_p1, - 1.1514610310E-1);
_PS_CONST(cephes_log_p2, 1.1676998740E-1);
_PS_CONST(cephes_log_p3, - 1.2420140846E-1);
_PS_CONST(cephes_log_p4, + 1.4249322787E-1);
_PS_CONST(cephes_log_p5, - 1.6668057665E-1);
_PS_CONST(cephes_log_p6, + 2.0000714765E-1);
_PS_CONST(cephes_log_p7, - 2.4999993993E-1);
_PS_CONST(cephes_log_p8, + 3.3333331174E-1);
_PS_CONST(cephes_log_q1, -2.12194440e-4);
_PS_CONST(cephes_log_q2, 0.693359375);

v4sf log_ps(v4sf x);
v4sf exp_ps(v4sf x);
v4sf sin_ps(v4sf x);
v4sf cos_ps(v4sf x);
void sincos_ps(v4sf x, v4sf *s, v4sf *c);

#ifndef USE_SSE2
typedef union xmm_mm_union {
__m128 xmm;
__m64 mm[2];
} xmm_mm_union;

#define COPY_XMM_TO_MM(xmm_, mm0_, mm1_) { \
xmm_mm_union u; u.xmm = xmm_; \
mm0_ = u.mm[0]; \
mm1_ = u.mm[1]; \
}

#define COPY_MM_TO_XMM(mm0_, mm1_, xmm_) { \
xmm_mm_union u; u.mm[0]=mm0_; u.mm[1]=mm1_; xmm_ = u.xmm; \
}

#endif // USE_SSE2

/* natural logarithm computed for 4 simultaneous float
return NaN for x <= 0
*/
v4sf log_ps(v4sf x) {
#ifdef USE_SSE2
v4si emm0;
#else
v2si mm0, mm1;
#endif
v4sf one = *(v4sf*)_ps_1;

v4sf invalid_mask = _mm_cmple_ps(x, _mm_setzero_ps());
v4sf e, mask, tmp, z, y;

x = _mm_max_ps(x, *(v4sf*)_ps_min_norm_pos); /* cut off denormalized stuff */

#ifndef USE_SSE2
/* part 1: x = frexpf(x, &e); */
COPY_XMM_TO_MM(x, mm0, mm1);
mm0 = _mm_srli_pi32(mm0, 23);
mm1 = _mm_srli_pi32(mm1, 23);
#else
emm0 = _mm_srli_epi32(_mm_castps_si128(x), 23);
#endif
/* keep only the fractional part */
x = _mm_and_ps(x, *(v4sf*)_ps_inv_mant_mask);
x = _mm_or_ps(x, *(v4sf*)_ps_0p5);

#ifndef USE_SSE2
/* now e=mm0:mm1 contain the really base-2 exponent */
mm0 = _mm_sub_pi32(mm0, *(v2si*)_pi32_0x7f);
mm1 = _mm_sub_pi32(mm1, *(v2si*)_pi32_0x7f);
e = _mm_cvtpi32x2_ps(mm0, mm1);
_mm_empty(); /* bye bye mmx */
#else
emm0 = _mm_sub_epi32(emm0, *(v4si*)_pi32_0x7f);
e = _mm_cvtepi32_ps(emm0);
#endif

e = _mm_add_ps(e, one);

/* part2:
if( x < SQRTHF ) {
e -= 1;
x = x + x - 1.0;
} else { x = x - 1.0; }
*/

mask = _mm_cmplt_ps(x, *(v4sf*)_ps_cephes_SQRTHF);
tmp = _mm_and_ps(x, mask);
x = _mm_sub_ps(x, one);
e = _mm_sub_ps(e, _mm_and_ps(one, mask));
x = _mm_add_ps(x, tmp);


z = _mm_mul_ps(x,x);

y = *(v4sf*)_ps_cephes_log_p0;
y = _mm_mul_ps(y, x);
y = _mm_add_ps(y, *(v4sf*)_ps_cephes_log_p1);
y = _mm_mul_ps(y, x);
y = _mm_add_ps(y, *(v4sf*)_ps_cephes_log_p2);
y = _mm_mul_ps(y, x);
y = _mm_add_ps(y, *(v4sf*)_ps_cephes_log_p3);
y = _mm_mul_ps(y, x);
y = _mm_add_ps(y, *(v4sf*)_ps_cephes_log_p4);
y = _mm_mul_ps(y, x);
y = _mm_add_ps(y, *(v4sf*)_ps_cephes_log_p5);
y = _mm_mul_ps(y, x);
y = _mm_add_ps(y, *(v4sf*)_ps_cephes_log_p6);
y = _mm_mul_ps(y, x);
y = _mm_add_ps(y, *(v4sf*)_ps_cephes_log_p7);
y = _mm_mul_ps(y, x);
y = _mm_add_ps(y, *(v4sf*)_ps_cephes_log_p8);
y = _mm_mul_ps(y, x);

y = _mm_mul_ps(y, z);

tmp = _mm_mul_ps(e, *(v4sf*)_ps_cephes_log_q1);
y = _mm_add_ps(y, tmp);


tmp = _mm_mul_ps(z, *(v4sf*)_ps_0p5);
y = _mm_sub_ps(y, tmp);

tmp = _mm_mul_ps(e, *(v4sf*)_ps_cephes_log_q2);
x = _mm_add_ps(x, y);
x = _mm_add_ps(x, tmp);
x = _mm_or_ps(x, invalid_mask); // negative arg will be NAN
return x;
}

_PS_CONST(exp_hi, 88.3762626647949f);
_PS_CONST(exp_lo, -88.3762626647949f);

_PS_CONST(cephes_LOG2EF, 1.44269504088896341);
_PS_CONST(cephes_exp_C1, 0.693359375);
_PS_CONST(cephes_exp_C2, -2.12194440e-4);

_PS_CONST(cephes_exp_p0, 1.9875691500E-4);
_PS_CONST(cephes_exp_p1, 1.3981999507E-3);
_PS_CONST(cephes_exp_p2, 8.3334519073E-3);
_PS_CONST(cephes_exp_p3, 4.1665795894E-2);
_PS_CONST(cephes_exp_p4, 1.6666665459E-1);
_PS_CONST(cephes_exp_p5, 5.0000001201E-1);

v4sf exp_ps(v4sf x) {
v4sf tmp = _mm_setzero_ps(), fx;
#ifdef USE_SSE2
v4si emm0;
#else
v2si mm0, mm1;
#endif
v4sf one = *(v4sf*)_ps_1;
v4sf mask, z, y, pow2n;

x = _mm_min_ps(x, *(v4sf*)_ps_exp_hi);
x = _mm_max_ps(x, *(v4sf*)_ps_exp_lo);

/* express exp(x) as exp(g + n*log(2)) */
fx = _mm_mul_ps(x, *(v4sf*)_ps_cephes_LOG2EF);
fx = _mm_add_ps(fx, *(v4sf*)_ps_0p5);

/* how to perform a floorf with SSE: just below */
#ifndef USE_SSE2
/* step 1 : cast to int */
tmp = _mm_movehl_ps(tmp, fx);
mm0 = _mm_cvttps_pi32(fx);
mm1 = _mm_cvttps_pi32(tmp);
/* step 2 : cast back to float */
tmp = _mm_cvtpi32x2_ps(mm0, mm1);
#else
emm0 = _mm_cvttps_epi32(fx);
tmp = _mm_cvtepi32_ps(emm0);
#endif
/* if greater, substract 1 */
mask = _mm_cmpgt_ps(tmp, fx);
mask = _mm_and_ps(mask, one);
fx = _mm_sub_ps(tmp, mask);

tmp = _mm_mul_ps(fx, *(v4sf*)_ps_cephes_exp_C1);
z = _mm_mul_ps(fx, *(v4sf*)_ps_cephes_exp_C2);
x = _mm_sub_ps(x, tmp);
x = _mm_sub_ps(x, z);

z = _mm_mul_ps(x,x);
y = *(v4sf*)_ps_cephes_exp_p0;
y = _mm_mul_ps(y, x);
y = _mm_add_ps(y, *(v4sf*)_ps_cephes_exp_p1);
y = _mm_mul_ps(y, x);
y = _mm_add_ps(y, *(v4sf*)_ps_cephes_exp_p2);
y = _mm_mul_ps(y, x);
y = _mm_add_ps(y, *(v4sf*)_ps_cephes_exp_p3);
y = _mm_mul_ps(y, x);
y = _mm_add_ps(y, *(v4sf*)_ps_cephes_exp_p4);
y = _mm_mul_ps(y, x);
y = _mm_add_ps(y, *(v4sf*)_ps_cephes_exp_p5);
y = _mm_mul_ps(y, z);
y = _mm_add_ps(y, x);
y = _mm_add_ps(y, one);

/* build 2^n */
#ifndef USE_SSE2
z = _mm_movehl_ps(z, fx);
mm0 = _mm_cvttps_pi32(fx);
mm1 = _mm_cvttps_pi32(z);
mm0 = _mm_add_pi32(mm0, *(v2si*)_pi32_0x7f);
mm1 = _mm_add_pi32(mm1, *(v2si*)_pi32_0x7f);
mm0 = _mm_slli_pi32(mm0, 23);
mm1 = _mm_slli_pi32(mm1, 23);
COPY_MM_TO_XMM(mm0, mm1, pow2n);
_mm_empty();
#else
emm0 = _mm_cvttps_epi32(fx);
emm0 = _mm_add_epi32(emm0, *(v4si*)_pi32_0x7f);
emm0 = _mm_slli_epi32(emm0, 23);
pow2n = _mm_castsi128_ps(emm0);
#endif
y = _mm_mul_ps(y, pow2n);
return y;
}

_PS_CONST(minus_cephes_DP1, -0.78515625);
_PS_CONST(minus_cephes_DP2, -2.4187564849853515625e-4);
_PS_CONST(minus_cephes_DP3, -3.77489497744594108e-8);
_PS_CONST(sincof_p0, -1.9515295891E-4);
_PS_CONST(sincof_p1, 8.3321608736E-3);
_PS_CONST(sincof_p2, -1.6666654611E-1);
_PS_CONST(coscof_p0, 2.443315711809948E-005);
_PS_CONST(coscof_p1, -1.388731625493765E-003);
_PS_CONST(coscof_p2, 4.166664568298827E-002);
_PS_CONST(cephes_FOPI, 1.27323954473516); // 4 / M_PI


/* evaluation of 4 sines at onces, using only SSE1+MMX intrinsics so
it runs also on old athlons XPs and the pentium III of your grand
mother.

The code is the exact rewriting of the cephes sinf function.
Precision is excellent as long as x < 8192 (I did not bother to
take into account the special handling they have for greater values
-- it does not return garbage for arguments over 8192, though, but
the extra precision is missing).

Note that it is such that sinf((float)M_PI) = 8.74e-8, which is the
surprising but correct result.

Performance is also surprisingly good, 1.33 times faster than the
macos vsinf SSE2 function, and 1.5 times faster than the
__vrs4_sinf of amd's ACML (which is only available in 64 bits). Not
too bad for an SSE1 function (with no special tuning) !
However the latter libraries probably have a much better handling of NaN,
Inf, denormalized and other special arguments..

On my core 1 duo, the execution of this function takes approximately 95 cycles.

From what I have observed on the experiments with Intel AMath lib, switching to an
SSE2 version would improve the perf by only 10%.

Since it is based on SSE intrinsics, it has to be compiled at -O2 to
deliver full speed.
*/
v4sf sin_ps(v4sf x) { // any x
v4sf xmm1, xmm2 = _mm_setzero_ps(), xmm3, sign_bit, y;

#ifdef USE_SSE2
v4si emm0, emm2;
#else
v2si mm0, mm1, mm2, mm3;
#endif
v4sf swap_sign_bit, poly_mask, z, tmp, y2;

sign_bit = x;
/* take the absolute value */
x = _mm_and_ps(x, *(v4sf*)_ps_inv_sign_mask);
/* extract the sign bit (upper one) */
sign_bit = _mm_and_ps(sign_bit, *(v4sf*)_ps_sign_mask);
/* scale by 4/Pi */
y = _mm_mul_ps(x, *(v4sf*)_ps_cephes_FOPI);

//printf("plop:"); print4(y);
#ifdef USE_SSE2
/* store the integer part of y in mm0 */
emm2 = _mm_cvttps_epi32(y);
/* j=(j+1) & (~1) (see the cephes sources) */
emm2 = _mm_add_epi32(emm2, *(v4si*)_pi32_1);
emm2 = _mm_and_si128(emm2, *(v4si*)_pi32_inv1);
y = _mm_cvtepi32_ps(emm2);
/* get the swap sign flag */
emm0 = _mm_and_si128(emm2, *(v4si*)_pi32_4);
emm0 = _mm_slli_epi32(emm0, 29);
/* get the polynom selection mask
there is one polynom for 0 <= x <= Pi/4
and another one for Pi/4<x<=Pi/2

Both branches will be computed.
*/
emm2 = _mm_and_si128(emm2, *(v4si*)_pi32_2);
emm2 = _mm_cmpeq_epi32(emm2, _mm_setzero_si128());
swap_sign_bit = _mm_castsi128_ps(emm0);
poly_mask = _mm_castsi128_ps(emm2);
sign_bit = _mm_xor_ps(sign_bit, swap_sign_bit);
#else
/* store the integer part of y in mm0:mm1 */
xmm2 = _mm_movehl_ps(xmm2, y);
mm2 = _mm_cvttps_pi32(y);
mm3 = _mm_cvttps_pi32(xmm2);
/* j=(j+1) & (~1) (see the cephes sources) */
mm2 = _mm_add_pi32(mm2, *(v2si*)_pi32_1);
mm3 = _mm_add_pi32(mm3, *(v2si*)_pi32_1);
mm2 = _mm_and_si64(mm2, *(v2si*)_pi32_inv1);
mm3 = _mm_and_si64(mm3, *(v2si*)_pi32_inv1);
y = _mm_cvtpi32x2_ps(mm2, mm3);
/* get the swap sign flag */
mm0 = _mm_and_si64(mm2, *(v2si*)_pi32_4);
mm1 = _mm_and_si64(mm3, *(v2si*)_pi32_4);
mm0 = _mm_slli_pi32(mm0, 29);
mm1 = _mm_slli_pi32(mm1, 29);
/* get the polynom selection mask */
mm2 = _mm_and_si64(mm2, *(v2si*)_pi32_2);
mm3 = _mm_and_si64(mm3, *(v2si*)_pi32_2);
mm2 = _mm_cmpeq_pi32(mm2, _mm_setzero_si64());
mm3 = _mm_cmpeq_pi32(mm3, _mm_setzero_si64());

COPY_MM_TO_XMM(mm0, mm1, swap_sign_bit);
COPY_MM_TO_XMM(mm2, mm3, poly_mask);
sign_bit = _mm_xor_ps(sign_bit, swap_sign_bit);
_mm_empty(); /* good-bye mmx */
#endif
/* The magic pass: "Extended precision modular arithmetic"
x = ((x - y * DP1) - y * DP2) - y * DP3; */
xmm1 = *(v4sf*)_ps_minus_cephes_DP1;
xmm2 = *(v4sf*)_ps_minus_cephes_DP2;
xmm3 = *(v4sf*)_ps_minus_cephes_DP3;
xmm1 = _mm_mul_ps(y, xmm1);
xmm2 = _mm_mul_ps(y, xmm2);
xmm3 = _mm_mul_ps(y, xmm3);
x = _mm_add_ps(x, xmm1);
x = _mm_add_ps(x, xmm2);
x = _mm_add_ps(x, xmm3);

/* Evaluate the first polynom (0 <= x <= Pi/4) */
y = *(v4sf*)_ps_coscof_p0;
z = _mm_mul_ps(x,x);

y = _mm_mul_ps(y, z);
y = _mm_add_ps(y, *(v4sf*)_ps_coscof_p1);
y = _mm_mul_ps(y, z);
y = _mm_add_ps(y, *(v4sf*)_ps_coscof_p2);
y = _mm_mul_ps(y, z);
y = _mm_mul_ps(y, z);
tmp = _mm_mul_ps(z, *(v4sf*)_ps_0p5);
y = _mm_sub_ps(y, tmp);
y = _mm_add_ps(y, *(v4sf*)_ps_1);
/* Evaluate the second polynom (Pi/4 <= x <= 0) */

y2 = *(v4sf*)_ps_sincof_p0;
y2 = _mm_mul_ps(y2, z);
y2 = _mm_add_ps(y2, *(v4sf*)_ps_sincof_p1);
y2 = _mm_mul_ps(y2, z);
y2 = _mm_add_ps(y2, *(v4sf*)_ps_sincof_p2);
y2 = _mm_mul_ps(y2, z);
y2 = _mm_mul_ps(y2, x);
y2 = _mm_add_ps(y2, x);

/* select the correct result from the two polynoms */
xmm3 = poly_mask;
y2 = _mm_and_ps(xmm3, y2); //, xmm3);
y = _mm_andnot_ps(xmm3, y);
y = _mm_add_ps(y,y2);
/* update the sign */
y = _mm_xor_ps(y, sign_bit);

return y;
}

/* almost the same as sin_ps */
v4sf cos_ps(v4sf x) { // any x
v4sf xmm1, xmm2 = _mm_setzero_ps(), xmm3, y;
#ifdef USE_SSE2
v4si emm0, emm2;
#else
v2si mm0, mm1, mm2, mm3;
#endif
v4sf sign_bit, poly_mask, z, tmp, y2;

/* take the absolute value */
x = _mm_and_ps(x, *(v4sf*)_ps_inv_sign_mask);
/* scale by 4/Pi */
y = _mm_mul_ps(x, *(v4sf*)_ps_cephes_FOPI);
#ifdef USE_SSE2
/* store the integer part of y in mm0 */
emm2 = _mm_cvttps_epi32(y);
/* j=(j+1) & (~1) (see the cephes sources) */
emm2 = _mm_add_epi32(emm2, *(v4si*)_pi32_1);
emm2 = _mm_and_si128(emm2, *(v4si*)_pi32_inv1);
y = _mm_cvtepi32_ps(emm2);

emm2 = _mm_sub_epi32(emm2, *(v4si*)_pi32_2);
/* get the swap sign flag */
emm0 = _mm_andnot_si128(emm2, *(v4si*)_pi32_4);
emm0 = _mm_slli_epi32(emm0, 29);
/* get the polynom selection mask */
emm2 = _mm_and_si128(emm2, *(v4si*)_pi32_2);
emm2 = _mm_cmpeq_epi32(emm2, _mm_setzero_si128());
sign_bit = _mm_castsi128_ps(emm0);
poly_mask = _mm_castsi128_ps(emm2);
#else
/* store the integer part of y in mm0:mm1 */
xmm2 = _mm_movehl_ps(xmm2, y);
mm2 = _mm_cvttps_pi32(y);
mm3 = _mm_cvttps_pi32(xmm2);

/* j=(j+1) & (~1) (see the cephes sources) */
mm2 = _mm_add_pi32(mm2, *(v2si*)_pi32_1);
mm3 = _mm_add_pi32(mm3, *(v2si*)_pi32_1);
mm2 = _mm_and_si64(mm2, *(v2si*)_pi32_inv1);
mm3 = _mm_and_si64(mm3, *(v2si*)_pi32_inv1);

y = _mm_cvtpi32x2_ps(mm2, mm3);


mm2 = _mm_sub_pi32(mm2, *(v2si*)_pi32_2);
mm3 = _mm_sub_pi32(mm3, *(v2si*)_pi32_2);

/* get the swap sign flag in mm0:mm1 and the
polynom selection mask in mm2:mm3 */

mm0 = _mm_andnot_si64(mm2, *(v2si*)_pi32_4);
mm1 = _mm_andnot_si64(mm3, *(v2si*)_pi32_4);
mm0 = _mm_slli_pi32(mm0, 29);
mm1 = _mm_slli_pi32(mm1, 29);

mm2 = _mm_and_si64(mm2, *(v2si*)_pi32_2);
mm3 = _mm_and_si64(mm3, *(v2si*)_pi32_2);

mm2 = _mm_cmpeq_pi32(mm2, _mm_setzero_si64());
mm3 = _mm_cmpeq_pi32(mm3, _mm_setzero_si64());

COPY_MM_TO_XMM(mm0, mm1, sign_bit);
COPY_MM_TO_XMM(mm2, mm3, poly_mask);
_mm_empty(); /* good-bye mmx */
#endif
/* The magic pass: "Extended precision modular arithmetic"
x = ((x - y * DP1) - y * DP2) - y * DP3; */
xmm1 = *(v4sf*)_ps_minus_cephes_DP1;
xmm2 = *(v4sf*)_ps_minus_cephes_DP2;
xmm3 = *(v4sf*)_ps_minus_cephes_DP3;
xmm1 = _mm_mul_ps(y, xmm1);
xmm2 = _mm_mul_ps(y, xmm2);
xmm3 = _mm_mul_ps(y, xmm3);
x = _mm_add_ps(x, xmm1);
x = _mm_add_ps(x, xmm2);
x = _mm_add_ps(x, xmm3);
/* Evaluate the first polynom (0 <= x <= Pi/4) */
y = *(v4sf*)_ps_coscof_p0;
z = _mm_mul_ps(x,x);

y = _mm_mul_ps(y, z);
y = _mm_add_ps(y, *(v4sf*)_ps_coscof_p1);
y = _mm_mul_ps(y, z);
y = _mm_add_ps(y, *(v4sf*)_ps_coscof_p2);
y = _mm_mul_ps(y, z);
y = _mm_mul_ps(y, z);
tmp = _mm_mul_ps(z, *(v4sf*)_ps_0p5);
y = _mm_sub_ps(y, tmp);
y = _mm_add_ps(y, *(v4sf*)_ps_1);
/* Evaluate the second polynom (Pi/4 <= x <= 0) */

y2 = *(v4sf*)_ps_sincof_p0;
y2 = _mm_mul_ps(y2, z);
y2 = _mm_add_ps(y2, *(v4sf*)_ps_sincof_p1);
y2 = _mm_mul_ps(y2, z);
y2 = _mm_add_ps(y2, *(v4sf*)_ps_sincof_p2);
y2 = _mm_mul_ps(y2, z);
y2 = _mm_mul_ps(y2, x);
y2 = _mm_add_ps(y2, x);

/* select the correct result from the two polynoms */
xmm3 = poly_mask;
y2 = _mm_and_ps(xmm3, y2); //, xmm3);
y = _mm_andnot_ps(xmm3, y);
y = _mm_add_ps(y,y2);
/* update the sign */
y = _mm_xor_ps(y, sign_bit);

return y;
}

/* since sin_ps and cos_ps are almost identical, sincos_ps could replace both of them..
it is almost as fast, and gives you a free cosine with your sine */
void sincos_ps(v4sf x, v4sf *s, v4sf *c) {
v4sf xmm1, xmm2, xmm3 = _mm_setzero_ps(), sign_bit_sin, y;
#ifdef USE_SSE2
v4si emm0, emm2, emm4;
#else
v2si mm0, mm1, mm2, mm3, mm4, mm5;
#endif
v4sf swap_sign_bit_sin, poly_mask, z, tmp, y2, ysin1, ysin2;
v4sf sign_bit_cos;

sign_bit_sin = x;
/* take the absolute value */
x = _mm_and_ps(x, *(v4sf*)_ps_inv_sign_mask);
/* extract the sign bit (upper one) */
sign_bit_sin = _mm_and_ps(sign_bit_sin, *(v4sf*)_ps_sign_mask);
/* scale by 4/Pi */
y = _mm_mul_ps(x, *(v4sf*)_ps_cephes_FOPI);
#ifdef USE_SSE2
/* store the integer part of y in emm2 */
emm2 = _mm_cvttps_epi32(y);

/* j=(j+1) & (~1) (see the cephes sources) */
emm2 = _mm_add_epi32(emm2, *(v4si*)_pi32_1);
emm2 = _mm_and_si128(emm2, *(v4si*)_pi32_inv1);
y = _mm_cvtepi32_ps(emm2);

emm4 = emm2;

/* get the swap sign flag for the sine */
emm0 = _mm_and_si128(emm2, *(v4si*)_pi32_4);
emm0 = _mm_slli_epi32(emm0, 29);
swap_sign_bit_sin = _mm_castsi128_ps(emm0);

/* get the polynom selection mask for the sine*/
emm2 = _mm_and_si128(emm2, *(v4si*)_pi32_2);
emm2 = _mm_cmpeq_epi32(emm2, _mm_setzero_si128());
poly_mask = _mm_castsi128_ps(emm2);
#else
/* store the integer part of y in mm2:mm3 */
xmm3 = _mm_movehl_ps(xmm3, y);
mm2 = _mm_cvttps_pi32(y);
mm3 = _mm_cvttps_pi32(xmm3);

/* j=(j+1) & (~1) (see the cephes sources) */
mm2 = _mm_add_pi32(mm2, *(v2si*)_pi32_1);
mm3 = _mm_add_pi32(mm3, *(v2si*)_pi32_1);
mm2 = _mm_and_si64(mm2, *(v2si*)_pi32_inv1);
mm3 = _mm_and_si64(mm3, *(v2si*)_pi32_inv1);

y = _mm_cvtpi32x2_ps(mm2, mm3);

mm4 = mm2;
mm5 = mm3;

/* get the swap sign flag for the sine */
mm0 = _mm_and_si64(mm2, *(v2si*)_pi32_4);
mm1 = _mm_and_si64(mm3, *(v2si*)_pi32_4);
mm0 = _mm_slli_pi32(mm0, 29);
mm1 = _mm_slli_pi32(mm1, 29);

COPY_MM_TO_XMM(mm0, mm1, swap_sign_bit_sin);

/* get the polynom selection mask for the sine */

mm2 = _mm_and_si64(mm2, *(v2si*)_pi32_2);
mm3 = _mm_and_si64(mm3, *(v2si*)_pi32_2);
mm2 = _mm_cmpeq_pi32(mm2, _mm_setzero_si64());
mm3 = _mm_cmpeq_pi32(mm3, _mm_setzero_si64());

COPY_MM_TO_XMM(mm2, mm3, poly_mask);
#endif

/* The magic pass: "Extended precision modular arithmetic"
x = ((x - y * DP1) - y * DP2) - y * DP3; */
xmm1 = *(v4sf*)_ps_minus_cephes_DP1;
xmm2 = *(v4sf*)_ps_minus_cephes_DP2;
xmm3 = *(v4sf*)_ps_minus_cephes_DP3;
xmm1 = _mm_mul_ps(y, xmm1);
xmm2 = _mm_mul_ps(y, xmm2);
xmm3 = _mm_mul_ps(y, xmm3);
x = _mm_add_ps(x, xmm1);
x = _mm_add_ps(x, xmm2);
x = _mm_add_ps(x, xmm3);

#ifdef USE_SSE2
emm4 = _mm_sub_epi32(emm4, *(v4si*)_pi32_2);
emm4 = _mm_andnot_si128(emm4, *(v4si*)_pi32_4);
emm4 = _mm_slli_epi32(emm4, 29);
sign_bit_cos = _mm_castsi128_ps(emm4);
#else
/* get the sign flag for the cosine */
mm4 = _mm_sub_pi32(mm4, *(v2si*)_pi32_2);
mm5 = _mm_sub_pi32(mm5, *(v2si*)_pi32_2);
mm4 = _mm_andnot_si64(mm4, *(v2si*)_pi32_4);
mm5 = _mm_andnot_si64(mm5, *(v2si*)_pi32_4);
mm4 = _mm_slli_pi32(mm4, 29);
mm5 = _mm_slli_pi32(mm5, 29);
COPY_MM_TO_XMM(mm4, mm5, sign_bit_cos);
_mm_empty(); /* good-bye mmx */
#endif

sign_bit_sin = _mm_xor_ps(sign_bit_sin, swap_sign_bit_sin);

/* Evaluate the first polynom (0 <= x <= Pi/4) */
z = _mm_mul_ps(x,x);
y = *(v4sf*)_ps_coscof_p0;

y = _mm_mul_ps(y, z);
y = _mm_add_ps(y, *(v4sf*)_ps_coscof_p1);
y = _mm_mul_ps(y, z);
y = _mm_add_ps(y, *(v4sf*)_ps_coscof_p2);
y = _mm_mul_ps(y, z);
y = _mm_mul_ps(y, z);
tmp = _mm_mul_ps(z, *(v4sf*)_ps_0p5);
y = _mm_sub_ps(y, tmp);
y = _mm_add_ps(y, *(v4sf*)_ps_1);
/* Evaluate the second polynom (Pi/4 <= x <= 0) */

y2 = *(v4sf*)_ps_sincof_p0;
y2 = _mm_mul_ps(y2, z);
y2 = _mm_add_ps(y2, *(v4sf*)_ps_sincof_p1);
y2 = _mm_mul_ps(y2, z);
y2 = _mm_add_ps(y2, *(v4sf*)_ps_sincof_p2);
y2 = _mm_mul_ps(y2, z);
y2 = _mm_mul_ps(y2, x);
y2 = _mm_add_ps(y2, x);

/* select the correct result from the two polynoms */
xmm3 = poly_mask;
ysin2 = _mm_and_ps(xmm3, y2);
ysin1 = _mm_andnot_ps(xmm3, y);
y2 = _mm_sub_ps(y2,ysin2);
y = _mm_sub_ps(y, ysin1);

xmm1 = _mm_add_ps(ysin1,ysin2);
xmm2 = _mm_add_ps(y,y2);
/* update the sign */
*s = _mm_xor_ps(xmm1, sign_bit_sin);
*c = _mm_xor_ps(xmm2, sign_bit_cos);
}


Loading…
Cancel
Save