|
|
@@ -0,0 +1,813 @@ |
|
|
|
/* |
|
|
|
* Copyright © 2016 Intel Corporation |
|
|
|
* |
|
|
|
* Permission is hereby granted, free of charge, to any person obtaining a |
|
|
|
* copy of this software and associated documentation files (the "Software"), |
|
|
|
* to deal in the Software without restriction, including without limitation |
|
|
|
* the rights to use, copy, modify, merge, publish, distribute, sublicense, |
|
|
|
* and/or sell copies of the Software, and to permit persons to whom the |
|
|
|
* Software is furnished to do so, subject to the following conditions: |
|
|
|
* |
|
|
|
* The above copyright notice and this permission notice (including the next |
|
|
|
* paragraph) shall be included in all copies or substantial portions of the |
|
|
|
* Software. |
|
|
|
* |
|
|
|
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR |
|
|
|
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, |
|
|
|
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL |
|
|
|
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER |
|
|
|
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING |
|
|
|
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS |
|
|
|
* IN THE SOFTWARE. |
|
|
|
*/ |
|
|
|
|
|
|
|
#include "nir.h" |
|
|
|
#include "nir_builder.h" |
|
|
|
|
|
|
|
#include "util/bitscan.h" |
|
|
|
|
|
|
|
/** |
|
|
|
* Variable-based copy propagation |
|
|
|
* |
|
|
|
* Normally, NIR trusts in SSA form for most of its copy-propagation needs. |
|
|
|
* However, there are cases, especially when dealing with indirects, where SSA |
|
|
|
* won't help you. This pass is for those times. Specifically, it handles |
|
|
|
* the following things that the rest of NIR can't: |
|
|
|
* |
|
|
|
* 1) Copy-propagation on variables that have indirect access. This includes |
|
|
|
* propagating from indirect stores into indirect loads. |
|
|
|
* |
|
|
|
* 2) Dead code elimination of store_var and copy_var intrinsics based on |
|
|
|
* killed destination values. |
|
|
|
* |
|
|
|
* 3) Removal of redundant load_var intrinsics. We can't trust regular CSE |
|
|
|
* to do this because it isn't aware of variable writes that may alias the |
|
|
|
* value and make the former load invalid. |
|
|
|
* |
|
|
|
* Unfortunately, properly handling all of those cases makes this path rather |
|
|
|
* complex. In order to avoid additional complexity, this pass is entirely |
|
|
|
* block-local. If we tried to make it global, the data-flow analysis would |
|
|
|
* rapidly get out of hand. Fortunately, for anything that is only ever |
|
|
|
* accessed directly, we get SSA based copy-propagation which is extremely |
|
|
|
* powerful so this isn't that great a loss. |
|
|
|
*/ |
|
|
|
|
|
|
|
struct value { |
|
|
|
bool is_ssa; |
|
|
|
union { |
|
|
|
nir_ssa_def *ssa[4]; |
|
|
|
nir_deref_var *deref; |
|
|
|
}; |
|
|
|
}; |
|
|
|
|
|
|
|
struct copy_entry { |
|
|
|
struct list_head link; |
|
|
|
|
|
|
|
nir_instr *store_instr[4]; |
|
|
|
|
|
|
|
unsigned comps_may_be_read; |
|
|
|
struct value src; |
|
|
|
|
|
|
|
nir_deref_var *dst; |
|
|
|
}; |
|
|
|
|
|
|
|
struct copy_prop_var_state { |
|
|
|
nir_shader *shader; |
|
|
|
|
|
|
|
void *mem_ctx; |
|
|
|
|
|
|
|
struct list_head copies; |
|
|
|
|
|
|
|
/* We're going to be allocating and deleting a lot of copy entries so we'll |
|
|
|
* keep a free list to avoid thrashing malloc too badly. |
|
|
|
*/ |
|
|
|
struct list_head copy_free_list; |
|
|
|
|
|
|
|
bool progress; |
|
|
|
}; |
|
|
|
|
|
|
|
static struct copy_entry * |
|
|
|
copy_entry_create(struct copy_prop_var_state *state, |
|
|
|
nir_deref_var *dst_deref) |
|
|
|
{ |
|
|
|
struct copy_entry *entry; |
|
|
|
if (!list_empty(&state->copy_free_list)) { |
|
|
|
struct list_head *item = state->copy_free_list.next; |
|
|
|
list_del(item); |
|
|
|
entry = LIST_ENTRY(struct copy_entry, item, link); |
|
|
|
memset(entry, 0, sizeof(*entry)); |
|
|
|
} else { |
|
|
|
entry = rzalloc(state->mem_ctx, struct copy_entry); |
|
|
|
} |
|
|
|
|
|
|
|
entry->dst = dst_deref; |
|
|
|
list_add(&entry->link, &state->copies); |
|
|
|
|
|
|
|
return entry; |
|
|
|
} |
|
|
|
|
|
|
|
static void |
|
|
|
copy_entry_remove(struct copy_prop_var_state *state, struct copy_entry *entry) |
|
|
|
{ |
|
|
|
list_del(&entry->link); |
|
|
|
list_add(&entry->link, &state->copy_free_list); |
|
|
|
} |
|
|
|
|
|
|
|
enum deref_compare_result { |
|
|
|
derefs_equal_bit = (1 << 0), |
|
|
|
derefs_may_alias_bit = (1 << 1), |
|
|
|
derefs_a_contains_b_bit = (1 << 2), |
|
|
|
derefs_b_contains_a_bit = (1 << 3), |
|
|
|
}; |
|
|
|
|
|
|
|
/** Returns true if the storage referrenced to by deref completely contains |
|
|
|
* the storage referenced by sub. |
|
|
|
* |
|
|
|
* NOTE: This is fairly general and could be moved to core NIR if someone else |
|
|
|
* ever needs it. |
|
|
|
*/ |
|
|
|
static enum deref_compare_result |
|
|
|
compare_derefs(nir_deref_var *a, nir_deref_var *b) |
|
|
|
{ |
|
|
|
if (a->var != b->var) |
|
|
|
return 0; |
|
|
|
|
|
|
|
/* Start off assuming they fully compare. We ignore equality for now. In |
|
|
|
* the end, we'll determine that by containment. |
|
|
|
*/ |
|
|
|
enum deref_compare_result result = derefs_may_alias_bit | |
|
|
|
derefs_a_contains_b_bit | |
|
|
|
derefs_b_contains_a_bit; |
|
|
|
|
|
|
|
nir_deref *a_tail = &a->deref; |
|
|
|
nir_deref *b_tail = &b->deref; |
|
|
|
while (a_tail->child && b_tail->child) { |
|
|
|
a_tail = a_tail->child; |
|
|
|
b_tail = b_tail->child; |
|
|
|
|
|
|
|
assert(a_tail->deref_type == b_tail->deref_type); |
|
|
|
switch (a_tail->deref_type) { |
|
|
|
case nir_deref_type_array: { |
|
|
|
nir_deref_array *a_arr = nir_deref_as_array(a_tail); |
|
|
|
nir_deref_array *b_arr = nir_deref_as_array(b_tail); |
|
|
|
|
|
|
|
if (a_arr->deref_array_type == nir_deref_array_type_direct && |
|
|
|
b_arr->deref_array_type == nir_deref_array_type_direct) { |
|
|
|
/* If they're both direct and have different offsets, they |
|
|
|
* don't even alias much less anything else. |
|
|
|
*/ |
|
|
|
if (a_arr->base_offset != b_arr->base_offset) |
|
|
|
return 0; |
|
|
|
} else if (a_arr->deref_array_type == nir_deref_array_type_wildcard) { |
|
|
|
if (b_arr->deref_array_type != nir_deref_array_type_wildcard) |
|
|
|
result &= ~derefs_b_contains_a_bit; |
|
|
|
} else if (b_arr->deref_array_type == nir_deref_array_type_wildcard) { |
|
|
|
if (a_arr->deref_array_type != nir_deref_array_type_wildcard) |
|
|
|
result &= ~derefs_a_contains_b_bit; |
|
|
|
} else if (a_arr->deref_array_type == nir_deref_array_type_indirect && |
|
|
|
b_arr->deref_array_type == nir_deref_array_type_indirect) { |
|
|
|
assert(a_arr->indirect.is_ssa && b_arr->indirect.is_ssa); |
|
|
|
if (a_arr->indirect.ssa == b_arr->indirect.ssa) { |
|
|
|
/* If they're different constant offsets from the same indirect |
|
|
|
* then they don't alias at all. |
|
|
|
*/ |
|
|
|
if (a_arr->base_offset != b_arr->base_offset) |
|
|
|
return 0; |
|
|
|
/* Otherwise the indirect and base both match */ |
|
|
|
} else { |
|
|
|
/* If they're have different indirect offsets then we can't |
|
|
|
* prove anything about containment. |
|
|
|
*/ |
|
|
|
result &= ~(derefs_a_contains_b_bit | derefs_b_contains_a_bit); |
|
|
|
} |
|
|
|
} else { |
|
|
|
/* In this case, one is indirect and the other direct so we can't |
|
|
|
* prove anything about containment. |
|
|
|
*/ |
|
|
|
result &= ~(derefs_a_contains_b_bit | derefs_b_contains_a_bit); |
|
|
|
} |
|
|
|
break; |
|
|
|
} |
|
|
|
|
|
|
|
case nir_deref_type_struct: { |
|
|
|
nir_deref_struct *a_struct = nir_deref_as_struct(a_tail); |
|
|
|
nir_deref_struct *b_struct = nir_deref_as_struct(b_tail); |
|
|
|
|
|
|
|
/* If they're different struct members, they don't even alias */ |
|
|
|
if (a_struct->index != b_struct->index) |
|
|
|
return 0; |
|
|
|
break; |
|
|
|
} |
|
|
|
|
|
|
|
default: |
|
|
|
unreachable("Invalid deref type"); |
|
|
|
} |
|
|
|
} |
|
|
|
|
|
|
|
/* If a is longer than b, then it can't contain b */ |
|
|
|
if (a_tail->child) |
|
|
|
result &= ~derefs_a_contains_b_bit; |
|
|
|
if (b_tail->child) |
|
|
|
result &= ~derefs_b_contains_a_bit; |
|
|
|
|
|
|
|
/* If a contains b and b contains a they must be equal. */ |
|
|
|
if ((result & derefs_a_contains_b_bit) && (result & derefs_b_contains_a_bit)) |
|
|
|
result |= derefs_equal_bit; |
|
|
|
|
|
|
|
return result; |
|
|
|
} |
|
|
|
|
|
|
|
static void |
|
|
|
remove_dead_writes(struct copy_prop_var_state *state, |
|
|
|
struct copy_entry *entry, unsigned write_mask) |
|
|
|
{ |
|
|
|
/* We're overwriting another entry. Some of it's components may not |
|
|
|
* have been read yet and, if that's the case, we may be able to delete |
|
|
|
* some instructions but we have to be careful. |
|
|
|
*/ |
|
|
|
unsigned dead_comps = write_mask & ~entry->comps_may_be_read; |
|
|
|
|
|
|
|
for (unsigned mask = dead_comps; mask;) { |
|
|
|
unsigned i = u_bit_scan(&mask); |
|
|
|
|
|
|
|
nir_instr *instr = entry->store_instr[i]; |
|
|
|
|
|
|
|
/* We may have already deleted it on a previous iteration */ |
|
|
|
if (!instr) |
|
|
|
continue; |
|
|
|
|
|
|
|
/* See if this instr is used anywhere that it's not dead */ |
|
|
|
bool keep = false; |
|
|
|
for (unsigned j = 0; j < 4; j++) { |
|
|
|
if (entry->store_instr[j] == instr) { |
|
|
|
if (dead_comps & (1 << j)) { |
|
|
|
entry->store_instr[j] = NULL; |
|
|
|
} else { |
|
|
|
keep = true; |
|
|
|
} |
|
|
|
} |
|
|
|
} |
|
|
|
|
|
|
|
if (!keep) { |
|
|
|
nir_instr_remove(instr); |
|
|
|
state->progress = true; |
|
|
|
} |
|
|
|
} |
|
|
|
} |
|
|
|
|
|
|
|
static struct copy_entry * |
|
|
|
lookup_entry_for_deref(struct copy_prop_var_state *state, |
|
|
|
nir_deref_var *deref, |
|
|
|
enum deref_compare_result allowed_comparisons) |
|
|
|
{ |
|
|
|
list_for_each_entry(struct copy_entry, iter, &state->copies, link) { |
|
|
|
if (compare_derefs(iter->dst, deref) & allowed_comparisons) |
|
|
|
return iter; |
|
|
|
} |
|
|
|
|
|
|
|
return NULL; |
|
|
|
} |
|
|
|
|
|
|
|
static void |
|
|
|
mark_aliased_entries_as_read(struct copy_prop_var_state *state, |
|
|
|
nir_deref_var *deref, unsigned components) |
|
|
|
{ |
|
|
|
list_for_each_entry(struct copy_entry, iter, &state->copies, link) { |
|
|
|
if (compare_derefs(iter->dst, deref) & derefs_may_alias_bit) |
|
|
|
iter->comps_may_be_read |= components; |
|
|
|
} |
|
|
|
} |
|
|
|
|
|
|
|
static struct copy_entry * |
|
|
|
get_entry_and_kill_aliases(struct copy_prop_var_state *state, |
|
|
|
nir_deref_var *deref, |
|
|
|
unsigned write_mask) |
|
|
|
{ |
|
|
|
struct copy_entry *entry = NULL; |
|
|
|
list_for_each_entry_safe(struct copy_entry, iter, &state->copies, link) { |
|
|
|
if (!iter->src.is_ssa) { |
|
|
|
/* If this write aliases the source of some entry, get rid of it */ |
|
|
|
if (compare_derefs(iter->src.deref, deref) & derefs_may_alias_bit) { |
|
|
|
copy_entry_remove(state, iter); |
|
|
|
continue; |
|
|
|
} |
|
|
|
} |
|
|
|
|
|
|
|
enum deref_compare_result comp = compare_derefs(iter->dst, deref); |
|
|
|
/* This is a store operation. If we completely overwrite some value, we |
|
|
|
* want to delete any dead writes that may be present. |
|
|
|
*/ |
|
|
|
if (comp & derefs_b_contains_a_bit) |
|
|
|
remove_dead_writes(state, iter, write_mask); |
|
|
|
|
|
|
|
if (comp & derefs_equal_bit) { |
|
|
|
assert(entry == NULL); |
|
|
|
entry = iter; |
|
|
|
} else if (comp & derefs_may_alias_bit) { |
|
|
|
copy_entry_remove(state, iter); |
|
|
|
} |
|
|
|
} |
|
|
|
|
|
|
|
if (entry == NULL) |
|
|
|
entry = copy_entry_create(state, deref); |
|
|
|
|
|
|
|
return entry; |
|
|
|
} |
|
|
|
|
|
|
|
static void |
|
|
|
apply_barrier_for_modes(struct copy_prop_var_state *state, |
|
|
|
nir_variable_mode modes) |
|
|
|
{ |
|
|
|
list_for_each_entry_safe(struct copy_entry, iter, &state->copies, link) { |
|
|
|
if ((iter->dst->var->data.mode & modes) || |
|
|
|
(!iter->src.is_ssa && (iter->src.deref->var->data.mode & modes))) |
|
|
|
copy_entry_remove(state, iter); |
|
|
|
} |
|
|
|
} |
|
|
|
|
|
|
|
static void |
|
|
|
store_to_entry(struct copy_prop_var_state *state, struct copy_entry *entry, |
|
|
|
const struct value *value, unsigned write_mask, |
|
|
|
nir_instr *store_instr) |
|
|
|
{ |
|
|
|
entry->comps_may_be_read &= ~write_mask; |
|
|
|
if (value->is_ssa) { |
|
|
|
entry->src.is_ssa = true; |
|
|
|
/* Only overwrite the written components */ |
|
|
|
for (unsigned i = 0; i < 4; i++) { |
|
|
|
if (write_mask & (1 << i)) { |
|
|
|
entry->store_instr[i] = store_instr; |
|
|
|
entry->src.ssa[i] = value->ssa[i]; |
|
|
|
} |
|
|
|
} |
|
|
|
} else { |
|
|
|
/* Non-ssa stores always write everything */ |
|
|
|
entry->src.is_ssa = false; |
|
|
|
entry->src.deref = value->deref; |
|
|
|
for (unsigned i = 0; i < 4; i++) |
|
|
|
entry->store_instr[i] = store_instr; |
|
|
|
} |
|
|
|
} |
|
|
|
|
|
|
|
/* Remove an instruction and return a cursor pointing to where it was */ |
|
|
|
static nir_cursor |
|
|
|
instr_remove_cursor(nir_instr *instr) |
|
|
|
{ |
|
|
|
nir_cursor cursor; |
|
|
|
nir_instr *prev = nir_instr_prev(instr); |
|
|
|
if (prev) { |
|
|
|
cursor = nir_after_instr(prev); |
|
|
|
} else { |
|
|
|
cursor = nir_before_block(instr->block); |
|
|
|
} |
|
|
|
nir_instr_remove(instr); |
|
|
|
return cursor; |
|
|
|
} |
|
|
|
|
|
|
|
/* Do a "load" from an SSA-based entry return it in "value" as a value with a |
|
|
|
* single SSA def. Because an entry could reference up to 4 different SSA |
|
|
|
* defs, a vecN operation may be inserted to combine them into a single SSA |
|
|
|
* def before handing it back to the caller. If the load instruction is no |
|
|
|
* longer needed, it is removed and nir_instr::block is set to NULL. (It is |
|
|
|
* possible, in some cases, for the load to be used in the vecN operation in |
|
|
|
* which case it isn't deleted.) |
|
|
|
*/ |
|
|
|
static bool |
|
|
|
load_from_ssa_entry_value(struct copy_prop_var_state *state, |
|
|
|
struct copy_entry *entry, |
|
|
|
nir_builder *b, nir_intrinsic_instr *intrin, |
|
|
|
struct value *value) |
|
|
|
{ |
|
|
|
*value = entry->src; |
|
|
|
assert(value->is_ssa); |
|
|
|
|
|
|
|
const struct glsl_type *type = nir_deref_tail(&entry->dst->deref)->type; |
|
|
|
unsigned num_components = glsl_get_vector_elements(type); |
|
|
|
|
|
|
|
uint8_t available = 0; |
|
|
|
bool all_same = true; |
|
|
|
for (unsigned i = 0; i < num_components; i++) { |
|
|
|
if (value->ssa[i]) |
|
|
|
available |= (1 << i); |
|
|
|
|
|
|
|
if (value->ssa[i] != value->ssa[0]) |
|
|
|
all_same = false; |
|
|
|
} |
|
|
|
|
|
|
|
if (all_same) { |
|
|
|
/* Our work here is done */ |
|
|
|
b->cursor = instr_remove_cursor(&intrin->instr); |
|
|
|
intrin->instr.block = NULL; |
|
|
|
return true; |
|
|
|
} |
|
|
|
|
|
|
|
if (available != (1 << num_components) - 1 && |
|
|
|
intrin->intrinsic == nir_intrinsic_load_var && |
|
|
|
(available & nir_ssa_def_components_read(&intrin->dest.ssa)) == 0) { |
|
|
|
/* If none of the components read are available as SSA values, then we |
|
|
|
* should just bail. Otherwise, we would end up replacing the uses of |
|
|
|
* the load_var a vecN() that just gathers up its components. |
|
|
|
*/ |
|
|
|
return false; |
|
|
|
} |
|
|
|
|
|
|
|
b->cursor = nir_after_instr(&intrin->instr); |
|
|
|
|
|
|
|
nir_ssa_def *load_def = |
|
|
|
intrin->intrinsic == nir_intrinsic_load_var ? &intrin->dest.ssa : NULL; |
|
|
|
|
|
|
|
bool keep_intrin = false; |
|
|
|
nir_ssa_def *comps[4]; |
|
|
|
for (unsigned i = 0; i < num_components; i++) { |
|
|
|
if (value->ssa[i]) { |
|
|
|
comps[i] = nir_channel(b, value->ssa[i], i); |
|
|
|
} else { |
|
|
|
/* We don't have anything for this component in our |
|
|
|
* list. Just re-use a channel from the load. |
|
|
|
*/ |
|
|
|
if (load_def == NULL) |
|
|
|
load_def = nir_load_deref_var(b, entry->dst); |
|
|
|
|
|
|
|
if (load_def->parent_instr == &intrin->instr) |
|
|
|
keep_intrin = true; |
|
|
|
|
|
|
|
comps[i] = nir_channel(b, load_def, i); |
|
|
|
} |
|
|
|
} |
|
|
|
|
|
|
|
nir_ssa_def *vec = nir_vec(b, comps, num_components); |
|
|
|
for (unsigned i = 0; i < num_components; i++) |
|
|
|
value->ssa[i] = vec; |
|
|
|
|
|
|
|
if (!keep_intrin) { |
|
|
|
/* Removing this instruction should not touch the cursor because we |
|
|
|
* created the cursor after the intrinsic and have added at least one |
|
|
|
* instruction (the vec) since then. |
|
|
|
*/ |
|
|
|
assert(b->cursor.instr != &intrin->instr); |
|
|
|
nir_instr_remove(&intrin->instr); |
|
|
|
intrin->instr.block = NULL; |
|
|
|
} |
|
|
|
|
|
|
|
return true; |
|
|
|
} |
|
|
|
|
|
|
|
/** |
|
|
|
* Specialize the wildcards in a deref chain |
|
|
|
* |
|
|
|
* This function returns a deref chain identical to \param deref except that |
|
|
|
* some of its wildcards are replaced with indices from \param specific. The |
|
|
|
* process is guided by \param guide which references the same type as \param |
|
|
|
* specific but has the same wildcard array lengths as \param deref. |
|
|
|
*/ |
|
|
|
static nir_deref_var * |
|
|
|
specialize_wildcards(nir_deref_var *deref, |
|
|
|
nir_deref_var *guide, |
|
|
|
nir_deref_var *specific, |
|
|
|
void *mem_ctx) |
|
|
|
{ |
|
|
|
nir_deref_var *ret = nir_deref_var_create(mem_ctx, deref->var); |
|
|
|
|
|
|
|
nir_deref *deref_tail = deref->deref.child; |
|
|
|
nir_deref *guide_tail = guide->deref.child; |
|
|
|
nir_deref *spec_tail = specific->deref.child; |
|
|
|
nir_deref *ret_tail = &ret->deref; |
|
|
|
while (deref_tail) { |
|
|
|
switch (deref_tail->deref_type) { |
|
|
|
case nir_deref_type_array: { |
|
|
|
nir_deref_array *deref_arr = nir_deref_as_array(deref_tail); |
|
|
|
|
|
|
|
nir_deref_array *ret_arr = nir_deref_array_create(ret_tail); |
|
|
|
ret_arr->deref.type = deref_arr->deref.type; |
|
|
|
ret_arr->deref_array_type = deref_arr->deref_array_type; |
|
|
|
|
|
|
|
switch (deref_arr->deref_array_type) { |
|
|
|
case nir_deref_array_type_direct: |
|
|
|
ret_arr->base_offset = deref_arr->base_offset; |
|
|
|
break; |
|
|
|
case nir_deref_array_type_indirect: |
|
|
|
ret_arr->base_offset = deref_arr->base_offset; |
|
|
|
assert(deref_arr->indirect.is_ssa); |
|
|
|
ret_arr->indirect = deref_arr->indirect; |
|
|
|
break; |
|
|
|
case nir_deref_array_type_wildcard: |
|
|
|
/* This is where things get tricky. We have to search through |
|
|
|
* the entry deref to find its corresponding wildcard and fill |
|
|
|
* this slot in with the value from the src. |
|
|
|
*/ |
|
|
|
while (guide_tail) { |
|
|
|
if (guide_tail->deref_type == nir_deref_type_array && |
|
|
|
nir_deref_as_array(guide_tail)->deref_array_type == |
|
|
|
nir_deref_array_type_wildcard) |
|
|
|
break; |
|
|
|
|
|
|
|
guide_tail = guide_tail->child; |
|
|
|
spec_tail = spec_tail->child; |
|
|
|
} |
|
|
|
|
|
|
|
nir_deref_array *spec_arr = nir_deref_as_array(spec_tail); |
|
|
|
ret_arr->deref_array_type = spec_arr->deref_array_type; |
|
|
|
ret_arr->base_offset = spec_arr->base_offset; |
|
|
|
ret_arr->indirect = spec_arr->indirect; |
|
|
|
} |
|
|
|
|
|
|
|
ret_tail->child = &ret_arr->deref; |
|
|
|
break; |
|
|
|
} |
|
|
|
case nir_deref_type_struct: { |
|
|
|
nir_deref_struct *deref_struct = nir_deref_as_struct(deref_tail); |
|
|
|
|
|
|
|
nir_deref_struct *ret_struct = |
|
|
|
nir_deref_struct_create(ret_tail, deref_struct->index); |
|
|
|
ret_struct->deref.type = deref_struct->deref.type; |
|
|
|
|
|
|
|
ret_tail->child = &ret_struct->deref; |
|
|
|
break; |
|
|
|
} |
|
|
|
case nir_deref_type_var: |
|
|
|
unreachable("Invalid deref type"); |
|
|
|
} |
|
|
|
|
|
|
|
deref_tail = deref_tail->child; |
|
|
|
ret_tail = ret_tail->child; |
|
|
|
} |
|
|
|
|
|
|
|
return ret; |
|
|
|
} |
|
|
|
|
|
|
|
/* Do a "load" from an deref-based entry return it in "value" as a value. The |
|
|
|
* deref returned in "value" will always be a fresh copy so the caller can |
|
|
|
* steal it and assign it to the instruction directly without copying it |
|
|
|
* again. |
|
|
|
*/ |
|
|
|
static bool |
|
|
|
load_from_deref_entry_value(struct copy_prop_var_state *state, |
|
|
|
struct copy_entry *entry, |
|
|
|
nir_builder *b, nir_intrinsic_instr *intrin, |
|
|
|
nir_deref_var *src, struct value *value) |
|
|
|
{ |
|
|
|
*value = entry->src; |
|
|
|
|
|
|
|
/* Walk the deref to get the two tails and also figure out if we need to |
|
|
|
* specialize any wildcards. |
|
|
|
*/ |
|
|
|
bool need_to_specialize_wildcards = false; |
|
|
|
nir_deref *entry_tail = &entry->dst->deref; |
|
|
|
nir_deref *src_tail = &src->deref; |
|
|
|
while (entry_tail->child && src_tail->child) { |
|
|
|
assert(src_tail->child->deref_type == entry_tail->child->deref_type); |
|
|
|
if (src_tail->child->deref_type == nir_deref_type_array) { |
|
|
|
nir_deref_array *entry_arr = nir_deref_as_array(entry_tail->child); |
|
|
|
nir_deref_array *src_arr = nir_deref_as_array(src_tail->child); |
|
|
|
|
|
|
|
if (src_arr->deref_array_type != nir_deref_array_type_wildcard && |
|
|
|
entry_arr->deref_array_type == nir_deref_array_type_wildcard) |
|
|
|
need_to_specialize_wildcards = true; |
|
|
|
} |
|
|
|
|
|
|
|
entry_tail = entry_tail->child; |
|
|
|
src_tail = src_tail->child; |
|
|
|
} |
|
|
|
|
|
|
|
/* If the entry deref is longer than the source deref then it refers to a |
|
|
|
* smaller type and we can't source from it. |
|
|
|
*/ |
|
|
|
assert(entry_tail->child == NULL); |
|
|
|
|
|
|
|
if (need_to_specialize_wildcards) { |
|
|
|
/* The entry has some wildcards that are not in src. This means we need |
|
|
|
* to construct a new deref based on the entry but using the wildcards |
|
|
|
* from the source and guided by the entry dst. Oof. |
|
|
|
*/ |
|
|
|
value->deref = specialize_wildcards(entry->src.deref, entry->dst, src, |
|
|
|
state->mem_ctx); |
|
|
|
} else { |
|
|
|
/* We're going to need to make a copy in case we modify it below */ |
|
|
|
value->deref = nir_deref_var_clone(value->deref, state->mem_ctx); |
|
|
|
} |
|
|
|
|
|
|
|
if (src_tail->child) { |
|
|
|
/* If our source deref is longer than the entry deref, that's ok because |
|
|
|
* it just means the entry deref needs to be extended a bit. |
|
|
|
*/ |
|
|
|
nir_deref *value_tail = nir_deref_tail(&value->deref->deref); |
|
|
|
value_tail->child = nir_deref_clone(src_tail->child, value_tail); |
|
|
|
} |
|
|
|
|
|
|
|
b->cursor = instr_remove_cursor(&intrin->instr); |
|
|
|
|
|
|
|
return true; |
|
|
|
} |
|
|
|
|
|
|
|
static bool |
|
|
|
try_load_from_entry(struct copy_prop_var_state *state, struct copy_entry *entry, |
|
|
|
nir_builder *b, nir_intrinsic_instr *intrin, |
|
|
|
nir_deref_var *src, struct value *value) |
|
|
|
{ |
|
|
|
if (entry == NULL) |
|
|
|
return false; |
|
|
|
|
|
|
|
if (entry->src.is_ssa) { |
|
|
|
return load_from_ssa_entry_value(state, entry, b, intrin, value); |
|
|
|
} else { |
|
|
|
return load_from_deref_entry_value(state, entry, b, intrin, src, value); |
|
|
|
} |
|
|
|
} |
|
|
|
|
|
|
|
static void |
|
|
|
copy_prop_vars_block(struct copy_prop_var_state *state, |
|
|
|
nir_builder *b, nir_block *block) |
|
|
|
{ |
|
|
|
/* Start each block with a blank slate */ |
|
|
|
list_for_each_entry_safe(struct copy_entry, iter, &state->copies, link) |
|
|
|
copy_entry_remove(state, iter); |
|
|
|
|
|
|
|
nir_foreach_instr_safe(instr, block) { |
|
|
|
if (instr->type != nir_instr_type_intrinsic) |
|
|
|
continue; |
|
|
|
|
|
|
|
nir_intrinsic_instr *intrin = nir_instr_as_intrinsic(instr); |
|
|
|
switch (intrin->intrinsic) { |
|
|
|
case nir_intrinsic_barrier: |
|
|
|
case nir_intrinsic_memory_barrier: |
|
|
|
/* If we hit a barrier, we need to trash everything that may possibly |
|
|
|
* be accessible to another thread. Locals, globals, and things of |
|
|
|
* the like are safe, however. |
|
|
|
*/ |
|
|
|
apply_barrier_for_modes(state, ~(nir_var_local | nir_var_global | |
|
|
|
nir_var_shader_in | nir_var_uniform)); |
|
|
|
break; |
|
|
|
|
|
|
|
case nir_intrinsic_emit_vertex: |
|
|
|
case nir_intrinsic_emit_vertex_with_counter: |
|
|
|
apply_barrier_for_modes(state, nir_var_shader_out); |
|
|
|
break; |
|
|
|
|
|
|
|
case nir_intrinsic_load_var: { |
|
|
|
nir_deref_var *src = intrin->variables[0]; |
|
|
|
|
|
|
|
uint8_t comps_read = nir_ssa_def_components_read(&intrin->dest.ssa); |
|
|
|
mark_aliased_entries_as_read(state, src, comps_read); |
|
|
|
|
|
|
|
struct copy_entry *src_entry = |
|
|
|
lookup_entry_for_deref(state, src, derefs_a_contains_b_bit); |
|
|
|
struct value value; |
|
|
|
if (try_load_from_entry(state, src_entry, b, intrin, src, &value)) { |
|
|
|
if (value.is_ssa) { |
|
|
|
/* lookup_load has already ensured that we get a single SSA |
|
|
|
* value that has all of the channels. We just have to do the |
|
|
|
* rewrite operation. |
|
|
|
*/ |
|
|
|
if (intrin->instr.block) { |
|
|
|
/* The lookup left our instruction in-place. This means it |
|
|
|
* must have used it to vec up a bunch of different sources. |
|
|
|
* We need to be careful when rewriting uses so we don't |
|
|
|
* rewrite the vecN itself. |
|
|
|
*/ |
|
|
|
nir_ssa_def_rewrite_uses_after(&intrin->dest.ssa, |
|
|
|
nir_src_for_ssa(value.ssa[0]), |
|
|
|
value.ssa[0]->parent_instr); |
|
|
|
} else { |
|
|
|
nir_ssa_def_rewrite_uses(&intrin->dest.ssa, |
|
|
|
nir_src_for_ssa(value.ssa[0])); |
|
|
|
} |
|
|
|
} else { |
|
|
|
/* We're turning it into a load of a different variable */ |
|
|
|
ralloc_steal(intrin, value.deref); |
|
|
|
intrin->variables[0] = value.deref; |
|
|
|
|
|
|
|
/* Put it back in again. */ |
|
|
|
nir_builder_instr_insert(b, instr); |
|
|
|
|
|
|
|
value.is_ssa = true; |
|
|
|
for (unsigned i = 0; i < intrin->num_components; i++) |
|
|
|
value.ssa[i] = &intrin->dest.ssa; |
|
|
|
} |
|
|
|
state->progress = true; |
|
|
|
} else { |
|
|
|
value.is_ssa = true; |
|
|
|
for (unsigned i = 0; i < intrin->num_components; i++) |
|
|
|
value.ssa[i] = &intrin->dest.ssa; |
|
|
|
} |
|
|
|
|
|
|
|
/* Now that we have a value, we're going to store it back so that we |
|
|
|
* have the right value next time we come looking for it. In order |
|
|
|
* to do this, we need an exact match, not just something that |
|
|
|
* contains what we're looking for. |
|
|
|
*/ |
|
|
|
struct copy_entry *store_entry = |
|
|
|
lookup_entry_for_deref(state, src, derefs_equal_bit); |
|
|
|
if (!store_entry) |
|
|
|
store_entry = copy_entry_create(state, src); |
|
|
|
|
|
|
|
/* Set up a store to this entry with the value of the load. This way |
|
|
|
* we can potentially remove subsequent loads. However, we use a |
|
|
|
* NULL instruction so we don't try and delete the load on a |
|
|
|
* subsequent store. |
|
|
|
*/ |
|
|
|
store_to_entry(state, store_entry, &value, |
|
|
|
((1 << intrin->num_components) - 1), NULL); |
|
|
|
break; |
|
|
|
} |
|
|
|
|
|
|
|
case nir_intrinsic_store_var: { |
|
|
|
struct value value = { |
|
|
|
.is_ssa = true |
|
|
|
}; |
|
|
|
|
|
|
|
for (unsigned i = 0; i < intrin->num_components; i++) |
|
|
|
value.ssa[i] = intrin->src[0].ssa; |
|
|
|
|
|
|
|
nir_deref_var *dst = intrin->variables[0]; |
|
|
|
unsigned wrmask = nir_intrinsic_write_mask(intrin); |
|
|
|
struct copy_entry *entry = |
|
|
|
get_entry_and_kill_aliases(state, dst, wrmask); |
|
|
|
store_to_entry(state, entry, &value, wrmask, &intrin->instr); |
|
|
|
break; |
|
|
|
} |
|
|
|
|
|
|
|
case nir_intrinsic_copy_var: { |
|
|
|
nir_deref_var *dst = intrin->variables[0]; |
|
|
|
nir_deref_var *src = intrin->variables[1]; |
|
|
|
|
|
|
|
if (compare_derefs(src, dst) & derefs_equal_bit) { |
|
|
|
/* This is a no-op self-copy. Get rid of it */ |
|
|
|
nir_instr_remove(instr); |
|
|
|
continue; |
|
|
|
} |
|
|
|
|
|
|
|
mark_aliased_entries_as_read(state, src, 0xf); |
|
|
|
|
|
|
|
struct copy_entry *src_entry = |
|
|
|
lookup_entry_for_deref(state, src, derefs_a_contains_b_bit); |
|
|
|
struct value value; |
|
|
|
if (try_load_from_entry(state, src_entry, b, intrin, src, &value)) { |
|
|
|
if (value.is_ssa) { |
|
|
|
nir_store_deref_var(b, dst, value.ssa[0], 0xf); |
|
|
|
intrin = nir_instr_as_intrinsic(nir_builder_last_instr(b)); |
|
|
|
} else { |
|
|
|
/* If this would be a no-op self-copy, don't bother. */ |
|
|
|
if (compare_derefs(value.deref, dst) & derefs_equal_bit) |
|
|
|
continue; |
|
|
|
|
|
|
|
/* Just turn it into a copy of a different deref */ |
|
|
|
ralloc_steal(intrin, value.deref); |
|
|
|
intrin->variables[1] = value.deref; |
|
|
|
|
|
|
|
/* Put it back in again. */ |
|
|
|
nir_builder_instr_insert(b, instr); |
|
|
|
} |
|
|
|
|
|
|
|
state->progress = true; |
|
|
|
} else { |
|
|
|
value = (struct value) { |
|
|
|
.is_ssa = false, |
|
|
|
.deref = src, |
|
|
|
}; |
|
|
|
} |
|
|
|
|
|
|
|
struct copy_entry *dst_entry = |
|
|
|
get_entry_and_kill_aliases(state, dst, 0xf); |
|
|
|
store_to_entry(state, dst_entry, &value, 0xf, &intrin->instr); |
|
|
|
break; |
|
|
|
} |
|
|
|
|
|
|
|
default: |
|
|
|
break; |
|
|
|
} |
|
|
|
} |
|
|
|
} |
|
|
|
|
|
|
|
bool |
|
|
|
nir_opt_copy_prop_vars(nir_shader *shader) |
|
|
|
{ |
|
|
|
struct copy_prop_var_state state; |
|
|
|
|
|
|
|
state.shader = shader; |
|
|
|
state.mem_ctx = ralloc_context(NULL); |
|
|
|
list_inithead(&state.copies); |
|
|
|
list_inithead(&state.copy_free_list); |
|
|
|
|
|
|
|
bool global_progress = false; |
|
|
|
nir_foreach_function(function, shader) { |
|
|
|
if (!function->impl) |
|
|
|
continue; |
|
|
|
|
|
|
|
nir_builder b; |
|
|
|
nir_builder_init(&b, function->impl); |
|
|
|
|
|
|
|
state.progress = false; |
|
|
|
nir_foreach_block(block, function->impl) |
|
|
|
copy_prop_vars_block(&state, &b, block); |
|
|
|
|
|
|
|
if (state.progress) { |
|
|
|
nir_metadata_preserve(function->impl, nir_metadata_block_index | |
|
|
|
nir_metadata_dominance); |
|
|
|
global_progress = true; |
|
|
|
} |
|
|
|
} |
|
|
|
|
|
|
|
ralloc_free(state.mem_ctx); |
|
|
|
|
|
|
|
return global_progress; |
|
|
|
} |