Browse Source

glsl: Add support for lowering 4x8 pack/unpack operations

Lower them to arithmetic and bit manipulation expressions.

Reviewed-by: Chad Versace <chad.versace@linux.intel.com>
Reviewed-by: Paul Berry <stereotype441@gmail.com>
tags/mesa-9.1-rc1
Matt Turner 12 years ago
parent
commit
321555fb41
2 changed files with 285 additions and 0 deletions
  1. 6
    0
      src/glsl/ir_optimization.h
  2. 279
    0
      src/glsl/lower_packing_builtins.cpp

+ 6
- 0
src/glsl/ir_optimization.h View File

@@ -54,6 +54,12 @@ enum lower_packing_builtins_op {

LOWER_PACK_HALF_2x16_TO_SPLIT = 0x0040,
LOWER_UNPACK_HALF_2x16_TO_SPLIT = 0x0080,

LOWER_PACK_SNORM_4x8 = 0x0100,
LOWER_UNPACK_SNORM_4x8 = 0x0200,

LOWER_PACK_UNORM_4x8 = 0x0400,
LOWER_UNPACK_UNORM_4x8 = 0x0800,
};

bool do_common_optimization(exec_list *ir, bool linked,

+ 279
- 0
src/glsl/lower_packing_builtins.cpp View File

@@ -84,9 +84,15 @@ public:
case LOWER_PACK_SNORM_2x16:
*rvalue = lower_pack_snorm_2x16(op0);
break;
case LOWER_PACK_SNORM_4x8:
*rvalue = lower_pack_snorm_4x8(op0);
break;
case LOWER_PACK_UNORM_2x16:
*rvalue = lower_pack_unorm_2x16(op0);
break;
case LOWER_PACK_UNORM_4x8:
*rvalue = lower_pack_unorm_4x8(op0);
break;
case LOWER_PACK_HALF_2x16:
*rvalue = lower_pack_half_2x16(op0);
break;
@@ -96,9 +102,15 @@ public:
case LOWER_UNPACK_SNORM_2x16:
*rvalue = lower_unpack_snorm_2x16(op0);
break;
case LOWER_UNPACK_SNORM_4x8:
*rvalue = lower_unpack_snorm_4x8(op0);
break;
case LOWER_UNPACK_UNORM_2x16:
*rvalue = lower_unpack_unorm_2x16(op0);
break;
case LOWER_UNPACK_UNORM_4x8:
*rvalue = lower_unpack_unorm_4x8(op0);
break;
case LOWER_UNPACK_HALF_2x16:
*rvalue = lower_unpack_half_2x16(op0);
break;
@@ -137,18 +149,30 @@ private:
case ir_unop_pack_snorm_2x16:
result = op_mask & LOWER_PACK_SNORM_2x16;
break;
case ir_unop_pack_snorm_4x8:
result = op_mask & LOWER_PACK_SNORM_4x8;
break;
case ir_unop_pack_unorm_2x16:
result = op_mask & LOWER_PACK_UNORM_2x16;
break;
case ir_unop_pack_unorm_4x8:
result = op_mask & LOWER_PACK_UNORM_4x8;
break;
case ir_unop_pack_half_2x16:
result = op_mask & (LOWER_PACK_HALF_2x16 | LOWER_PACK_HALF_2x16_TO_SPLIT);
break;
case ir_unop_unpack_snorm_2x16:
result = op_mask & LOWER_UNPACK_SNORM_2x16;
break;
case ir_unop_unpack_snorm_4x8:
result = op_mask & LOWER_UNPACK_SNORM_4x8;
break;
case ir_unop_unpack_unorm_2x16:
result = op_mask & LOWER_UNPACK_UNORM_2x16;
break;
case ir_unop_unpack_unorm_4x8:
result = op_mask & LOWER_UNPACK_UNORM_4x8;
break;
case ir_unop_unpack_half_2x16:
result = op_mask & (LOWER_UNPACK_HALF_2x16 | LOWER_UNPACK_HALF_2x16_TO_SPLIT);
break;
@@ -206,6 +230,30 @@ private:
bit_and(swizzle_x(u), constant(0xffffu)));
}

/**
* \brief Pack four uint8's into a single uint32.
*
* Interpret the given uvec4 as a uint32 4-typle. Pack the 4-tuple into a
* uint32 where the least significant bits specify the first element of the
* 4-tuple. Return the uint32.
*/
ir_rvalue*
pack_uvec4_to_uint(ir_rvalue *uvec4_rval)
{
assert(uvec4_rval->type == glsl_type::uvec4_type);

/* uvec4 u = UVEC4_RVAL; */
ir_variable *u = factory.make_temp(glsl_type::uvec4_type,
"tmp_pack_uvec4_to_uint");
factory.emit(assign(u, bit_and(uvec4_rval, constant(0xffu))));

/* return (u.w << 24) | (u.z << 16) | (u.y << 8) | u.x; */
return bit_or(bit_or(lshift(swizzle_w(u), constant(24u)),
lshift(swizzle_z(u), constant(16u))),
bit_or(lshift(swizzle_y(u), constant(8u)),
swizzle_x(u)));
}

/**
* \brief Unpack a uint32 into two uint16's.
*
@@ -236,6 +284,44 @@ private:
return deref(u2).val;
}

/**
* \brief Unpack a uint32 into four uint8's.
*
* Interpret the given uint32 as a uint8 4-tuple where the uint32's least
* significant bits specify the 4-tuple's first element. Return the uint8
* 4-tuple as a uvec4.
*/
ir_rvalue*
unpack_uint_to_uvec4(ir_rvalue *uint_rval)
{
assert(uint_rval->type == glsl_type::uint_type);

/* uint u = UINT_RVAL; */
ir_variable *u = factory.make_temp(glsl_type::uint_type,
"tmp_unpack_uint_to_uvec4_u");
factory.emit(assign(u, uint_rval));

/* uvec4 u4; */
ir_variable *u4 = factory.make_temp(glsl_type::uvec4_type,
"tmp_unpack_uint_to_uvec4_u4");

/* u4.x = u & 0xffu; */
factory.emit(assign(u4, bit_and(u, constant(0xffu)), WRITEMASK_X));

/* u4.y = (u >> 8u) & 0xffu; */
factory.emit(assign(u4, bit_and(rshift(u, constant(8u)),
constant(0xffu)), WRITEMASK_Y));

/* u4.z = (u >> 16u) & 0xffu; */
factory.emit(assign(u4, bit_and(rshift(u, constant(16u)),
constant(0xffu)), WRITEMASK_Z));

/* u4.w = (u >> 24u) */
factory.emit(assign(u4, rshift(u, constant(24u)), WRITEMASK_W));

return deref(u4).val;
}

/**
* \brief Lower a packSnorm2x16 expression.
*
@@ -285,6 +371,55 @@ private:
return result;
}

/**
* \brief Lower a packSnorm4x8 expression.
*
* \param vec4_rval is packSnorm4x8's input
* \return packSnorm4x8's output as a uint rvalue
*/
ir_rvalue*
lower_pack_snorm_4x8(ir_rvalue *vec4_rval)
{
/* From page 137 (143 of pdf) of the GLSL 4.30 spec:
*
* highp uint packSnorm4x8(vec4 v)
* -------------------------------
* First, converts each component of the normalized floating-point value
* v into 8-bit integer values. Then, the results are packed into the
* returned 32-bit unsigned integer.
*
* The conversion for component c of v to fixed point is done as
* follows:
*
* packSnorm4x8: round(clamp(c, -1, +1) * 127.0)
*
* The first component of the vector will be written to the least
* significant bits of the output; the last component will be written to
* the most significant bits.
*
* This function generates IR that approximates the following pseudo-GLSL:
*
* return pack_uvec4_to_uint(
* uvec4(ivec4(
* round(clamp(VEC4_RVALUE, -1.0f, 1.0f) * 127.0f))));
*
* It is necessary to first convert the vec4 to ivec4 rather than directly
* converting vec4 to uvec4 because the latter conversion is undefined.
* From page 87 (93 of pdf) of the GLSL 4.30 spec: "It is undefined to
* convert a negative floating point value to an uint".
*/
assert(vec4_rval->type == glsl_type::vec4_type);

ir_rvalue *result = pack_uvec4_to_uint(
i2u(f2i(round_even(mul(clamp(vec4_rval,
constant(-1.0f),
constant(1.0f)),
constant(127.0f))))));

assert(result->type == glsl_type::uint_type);
return result;
}

/**
* \brief Lower an unpackSnorm2x16 expression.
*
@@ -344,6 +479,65 @@ private:
return result;
}

/**
* \brief Lower an unpackSnorm4x8 expression.
*
* \param uint_rval is unpackSnorm4x8's input
* \return unpackSnorm4x8's output as a vec4 rvalue
*/
ir_rvalue*
lower_unpack_snorm_4x8(ir_rvalue *uint_rval)
{
/* From page 137 (143 of pdf) of the GLSL 4.30 spec:
*
* highp vec4 unpackSnorm4x8 (highp uint p)
* ----------------------------------------
* First, unpacks a single 32-bit unsigned integer p into four
* 8-bit unsigned integers. Then, each component is converted to
* a normalized floating-point value to generate the returned
* four-component vector.
*
* The conversion for unpacked fixed-point value f to floating point is
* done as follows:
*
* unpackSnorm4x8: clamp(f / 127.0, -1, +1)
*
* The first component of the returned vector will be extracted from the
* least significant bits of the input; the last component will be
* extracted from the most significant bits.
*
* This function generates IR that approximates the following pseudo-GLSL:
*
* return clamp(
* ((ivec4(unpack_uint_to_uvec4(UINT_RVALUE)) << 24) >> 24) / 127.0f,
* -1.0f, 1.0f);
*
* The above IR may appear unnecessarily complex, but the intermediate
* conversion to ivec4 and the bit shifts are necessary to correctly unpack
* negative floats.
*
* To see why, consider packing and then unpacking vec4(-1.0, 0.0, 0.0,
* 0.0). packSnorm4x8 encodes -1.0 as the int8 0xff. During unpacking, we
* place that int8 into an int32, which results in the *positive* integer
* 0x000000ff. The int8's sign bit becomes, in the int32, the rather
* unimportant bit 8. We must now extend the int8's sign bit into bits
* 9-32, which is accomplished by left-shifting then right-shifting.
*/

assert(uint_rval->type == glsl_type::uint_type);

ir_rvalue *result =
clamp(div(i2f(rshift(lshift(u2i(unpack_uint_to_uvec4(uint_rval)),
constant(24u)),
constant(24u))),
constant(127.0f)),
constant(-1.0f),
constant(1.0f));

assert(result->type == glsl_type::vec4_type);
return result;
}

/**
* \brief Lower a packUnorm2x16 expression.
*
@@ -388,6 +582,50 @@ private:
return result;
}

/**
* \brief Lower a packUnorm4x8 expression.
*
* \param vec4_rval is packUnorm4x8's input
* \return packUnorm4x8's output as a uint rvalue
*/
ir_rvalue*
lower_pack_unorm_4x8(ir_rvalue *vec4_rval)
{
/* From page 137 (143 of pdf) of the GLSL 4.30 spec:
*
* highp uint packUnorm4x8 (vec4 v)
* --------------------------------
* First, converts each component of the normalized floating-point value
* v into 8-bit integer values. Then, the results are packed into the
* returned 32-bit unsigned integer.
*
* The conversion for component c of v to fixed point is done as
* follows:
*
* packUnorm4x8: round(clamp(c, 0, +1) * 255.0)
*
* The first component of the vector will be written to the least
* significant bits of the output; the last component will be written to
* the most significant bits.
*
* This function generates IR that approximates the following pseudo-GLSL:
*
* return pack_uvec4_to_uint(uvec4(
* round(clamp(VEC2_RVALUE, 0.0f, 1.0f) * 255.0f)));
*
* Here it is safe to directly convert the vec4 to uvec4 because the the
* vec4 has been clamped to a non-negative range.
*/

assert(vec4_rval->type == glsl_type::vec4_type);

ir_rvalue *result = pack_uvec4_to_uint(
f2u(round_even(mul(saturate(vec4_rval), constant(255.0f)))));

assert(result->type == glsl_type::uint_type);
return result;
}

/**
* \brief Lower an unpackUnorm2x16 expression.
*
@@ -429,6 +667,47 @@ private:
return result;
}

/**
* \brief Lower an unpackUnorm4x8 expression.
*
* \param uint_rval is unpackUnorm4x8's input
* \return unpackUnorm4x8's output as a vec4 rvalue
*/
ir_rvalue*
lower_unpack_unorm_4x8(ir_rvalue *uint_rval)
{
/* From page 137 (143 of pdf) of the GLSL 4.30 spec:
*
* highp vec4 unpackUnorm4x8 (highp uint p)
* ----------------------------------------
* First, unpacks a single 32-bit unsigned integer p into four
* 8-bit unsigned integers. Then, each component is converted to
* a normalized floating-point value to generate the returned
* two-component vector.
*
* The conversion for unpacked fixed-point value f to floating point is
* done as follows:
*
* unpackUnorm4x8: f / 255.0
*
* The first component of the returned vector will be extracted from the
* least significant bits of the input; the last component will be
* extracted from the most significant bits.
*
* This function generates IR that approximates the following pseudo-GLSL:
*
* return vec4(unpack_uint_to_uvec4(UINT_RVALUE)) / 255.0;
*/

assert(uint_rval->type == glsl_type::uint_type);

ir_rvalue *result = div(u2f(unpack_uint_to_uvec4(uint_rval)),
constant(255.0f));

assert(result->type == glsl_type::vec4_type);
return result;
}

/**
* \brief Lower the component-wise calculation of packHalf2x16.
*

Loading…
Cancel
Save