Bladeren bron

radv: Do not hardcode fast clear formats.

except for the odd one out.

This should support many more formats.

Reviewed-by: Dave Airlie <airlied@redhat.com>
tags/18.2-branchpoint
Bas Nieuwenhuizen 7 jaren geleden
bovenliggende
commit
2a10fd902d
1 gewijzigde bestanden met toevoegingen van 73 en 180 verwijderingen
  1. 73
    180
      src/amd/vulkan/radv_formats.c

+ 73
- 180
src/amd/vulkan/radv_formats.c Bestand weergeven

@@ -880,194 +880,87 @@ bool radv_format_pack_clear_color(VkFormat format,
uint32_t clear_vals[2],
VkClearColorValue *value)
{
uint8_t r = 0, g = 0, b = 0, a = 0;
const struct vk_format_description *desc = vk_format_description(format);

if (vk_format_get_component_bits(format, VK_FORMAT_COLORSPACE_RGB, 0) <= 8) {
if (desc->colorspace == VK_FORMAT_COLORSPACE_RGB) {
r = float_to_ubyte(value->float32[0]);
g = float_to_ubyte(value->float32[1]);
b = float_to_ubyte(value->float32[2]);
a = float_to_ubyte(value->float32[3]);
} else if (desc->colorspace == VK_FORMAT_COLORSPACE_SRGB) {
r = util_format_linear_float_to_srgb_8unorm(value->float32[0]);
g = util_format_linear_float_to_srgb_8unorm(value->float32[1]);
b = util_format_linear_float_to_srgb_8unorm(value->float32[2]);
a = float_to_ubyte(value->float32[3]);
}
}
switch (format) {
case VK_FORMAT_R8_UNORM:
case VK_FORMAT_R8_SRGB:
clear_vals[0] = r;
clear_vals[1] = 0;
break;
case VK_FORMAT_R8G8_UNORM:
case VK_FORMAT_R8G8_SRGB:
clear_vals[0] = r | g << 8;
clear_vals[1] = 0;
break;
case VK_FORMAT_R8G8B8A8_SRGB:
case VK_FORMAT_R8G8B8A8_UNORM:
clear_vals[0] = r | g << 8 | b << 16 | a << 24;
clear_vals[1] = 0;
break;
case VK_FORMAT_B8G8R8A8_SRGB:
case VK_FORMAT_B8G8R8A8_UNORM:
clear_vals[0] = b | g << 8 | r << 16 | a << 24;
clear_vals[1] = 0;
break;
case VK_FORMAT_A8B8G8R8_UNORM_PACK32:
case VK_FORMAT_A8B8G8R8_SRGB_PACK32:
clear_vals[0] = r | g << 8 | b << 16 | a << 24;
clear_vals[1] = 0;
break;
case VK_FORMAT_R8_UINT:
clear_vals[0] = value->uint32[0] & 0xff;
clear_vals[1] = 0;
break;
case VK_FORMAT_R8_SINT:
clear_vals[0] = value->int32[0] & 0xff;
clear_vals[1] = 0;
break;
case VK_FORMAT_R16_UINT:
clear_vals[0] = value->uint32[0] & 0xffff;
clear_vals[1] = 0;
break;
case VK_FORMAT_R8G8_UINT:
clear_vals[0] = value->uint32[0] & 0xff;
clear_vals[0] |= (value->uint32[1] & 0xff) << 8;
clear_vals[1] = 0;
break;
case VK_FORMAT_R8G8_SINT:
clear_vals[0] = value->int32[0] & 0xff;
clear_vals[0] |= (value->int32[1] & 0xff) << 8;
clear_vals[1] = 0;
break;
case VK_FORMAT_R8G8B8A8_UINT:
clear_vals[0] = value->uint32[0] & 0xff;
clear_vals[0] |= (value->uint32[1] & 0xff) << 8;
clear_vals[0] |= (value->uint32[2] & 0xff) << 16;
clear_vals[0] |= (value->uint32[3] & 0xff) << 24;
clear_vals[1] = 0;
break;
case VK_FORMAT_R8G8B8A8_SINT:
clear_vals[0] = value->int32[0] & 0xff;
clear_vals[0] |= (value->int32[1] & 0xff) << 8;
clear_vals[0] |= (value->int32[2] & 0xff) << 16;
clear_vals[0] |= (value->int32[3] & 0xff) << 24;
clear_vals[1] = 0;
break;
case VK_FORMAT_A8B8G8R8_UINT_PACK32:
clear_vals[0] = value->uint32[0] & 0xff;
clear_vals[0] |= (value->uint32[1] & 0xff) << 8;
clear_vals[0] |= (value->uint32[2] & 0xff) << 16;
clear_vals[0] |= (value->uint32[3] & 0xff) << 24;
clear_vals[1] = 0;
break;
case VK_FORMAT_R16G16_UINT:
clear_vals[0] = value->uint32[0] & 0xffff;
clear_vals[0] |= (value->uint32[1] & 0xffff) << 16;
clear_vals[1] = 0;
break;
case VK_FORMAT_R16G16B16A16_UINT:
clear_vals[0] = value->uint32[0] & 0xffff;
clear_vals[0] |= (value->uint32[1] & 0xffff) << 16;
clear_vals[1] = value->uint32[2] & 0xffff;
clear_vals[1] |= (value->uint32[3] & 0xffff) << 16;
break;
case VK_FORMAT_R32_UINT:
clear_vals[0] = value->uint32[0];
clear_vals[1] = 0;
break;
case VK_FORMAT_R32G32_UINT:
clear_vals[0] = value->uint32[0];
clear_vals[1] = value->uint32[1];
break;
case VK_FORMAT_R32_SINT:
clear_vals[0] = value->int32[0];
clear_vals[1] = 0;
break;
case VK_FORMAT_R16_SFLOAT:
clear_vals[0] = util_float_to_half(value->float32[0]);
clear_vals[1] = 0;
break;
case VK_FORMAT_R16G16_SFLOAT:
clear_vals[0] = util_float_to_half(value->float32[0]);
clear_vals[0] |= (uint32_t)util_float_to_half(value->float32[1]) << 16;
clear_vals[1] = 0;
break;
case VK_FORMAT_R16G16B16A16_SFLOAT:
clear_vals[0] = util_float_to_half(value->float32[0]);
clear_vals[0] |= (uint32_t)util_float_to_half(value->float32[1]) << 16;
clear_vals[1] = util_float_to_half(value->float32[2]);
clear_vals[1] |= (uint32_t)util_float_to_half(value->float32[3]) << 16;
break;
case VK_FORMAT_R16_UNORM:
clear_vals[0] = ((uint16_t)util_iround(CLAMP(value->float32[0], 0.0f, 1.0f) * 0xffff)) & 0xffff;
clear_vals[1] = 0;
break;
case VK_FORMAT_R16G16_UNORM:
clear_vals[0] = ((uint16_t)util_iround(CLAMP(value->float32[0], 0.0f, 1.0f) * 0xffff)) & 0xffff;
clear_vals[0] |= ((uint16_t)util_iround(CLAMP(value->float32[1], 0.0f, 1.0f) * 0xffff)) << 16;
clear_vals[1] = 0;
break;
case VK_FORMAT_R16G16B16A16_UNORM:
clear_vals[0] = ((uint16_t)util_iround(CLAMP(value->float32[0], 0.0f, 1.0f) * 0xffff)) & 0xffff;
clear_vals[0] |= ((uint16_t)util_iround(CLAMP(value->float32[1], 0.0f, 1.0f) * 0xffff)) << 16;
clear_vals[1] = ((uint16_t)util_iround(CLAMP(value->float32[2], 0.0f, 1.0f) * 0xffff)) & 0xffff;
clear_vals[1] |= ((uint16_t)util_iround(CLAMP(value->float32[3], 0.0f, 1.0f) * 0xffff)) << 16;
break;
case VK_FORMAT_R16G16B16A16_SNORM:
clear_vals[0] = ((uint16_t)util_iround(CLAMP(value->float32[0], -1.0f, 1.0f) * 0x7fff)) & 0xffff;
clear_vals[0] |= ((uint16_t)util_iround(CLAMP(value->float32[1], -1.0f, 1.0f) * 0x7fff)) << 16;
clear_vals[1] = ((uint16_t)util_iround(CLAMP(value->float32[2], -1.0f, 1.0f) * 0x7fff)) & 0xffff;
clear_vals[1] |= ((uint16_t)util_iround(CLAMP(value->float32[3], -1.0f, 1.0f) * 0x7fff)) << 16;
break;
case VK_FORMAT_A2B10G10R10_UNORM_PACK32:
clear_vals[0] = ((uint16_t)util_iround(CLAMP(value->float32[0], 0.0f, 1.0f) * 0x3ff)) & 0x3ff;
clear_vals[0] |= (((uint16_t)util_iround(CLAMP(value->float32[1], 0.0f, 1.0f) * 0x3ff)) & 0x3ff) << 10;
clear_vals[0] |= (((uint16_t)util_iround(CLAMP(value->float32[2], 0.0f, 1.0f) * 0x3ff)) & 0x3ff) << 20;
clear_vals[0] |= (((uint16_t)util_iround(CLAMP(value->float32[3], 0.0f, 1.0f) * 0x3)) & 0x3) << 30;
clear_vals[1] = 0;
return true;
case VK_FORMAT_R32G32_SFLOAT:
clear_vals[0] = fui(value->float32[0]);
clear_vals[1] = fui(value->float32[1]);
break;
case VK_FORMAT_R32_SFLOAT:
clear_vals[1] = 0;
clear_vals[0] = fui(value->float32[0]);
break;
case VK_FORMAT_B10G11R11_UFLOAT_PACK32:
if (format == VK_FORMAT_B10G11R11_UFLOAT_PACK32) {
clear_vals[0] = float3_to_r11g11b10f(value->float32);
clear_vals[1] = 0;
break;
case VK_FORMAT_R32G32B32A32_SFLOAT:
if (value->float32[0] != value->float32[1] ||
value->float32[0] != value->float32[2])
return false;
clear_vals[0] = fui(value->float32[0]);
clear_vals[1] = fui(value->float32[3]);
break;
case VK_FORMAT_R32G32B32A32_UINT:
if (value->uint32[0] != value->uint32[1] ||
value->uint32[0] != value->uint32[2])
return false;
return true;
}

if (desc->layout != VK_FORMAT_LAYOUT_PLAIN) {
fprintf(stderr, "failed to fast clear for non-plain format %d\n", format);
return false;
}

if (!util_is_power_of_two_or_zero(desc->block.bits)) {
fprintf(stderr, "failed to fast clear for NPOT format %d\n", format);
return false;
}

if (desc->block.bits > 64) {
/*
* We have a 128 bits format, check if the first 3 components are the same.
* Every elements has to be 32 bits since we don't support 64-bit formats,
* and we can skip swizzling checks as alpha always comes last for these and
* we do not care about the rest as they have to be the same.
*/
if (desc->channel[0].type == VK_FORMAT_TYPE_FLOAT) {
if (value->float32[0] != value->float32[1] ||
value->float32[0] != value->float32[2])
return false;
} else {
if (value->uint32[0] != value->uint32[1] ||
value->uint32[0] != value->uint32[2])
return false;
}
clear_vals[0] = value->uint32[0];
clear_vals[1] = value->uint32[3];
break;
case VK_FORMAT_R32G32B32A32_SINT:
if (value->int32[0] != value->int32[1] ||
value->int32[0] != value->int32[2])
return true;
}
uint64_t clear_val = 0;

for (unsigned c = 0; c < 4; ++c) {
if (desc->swizzle[c] < 0 || desc->swizzle[c] >= 4)
continue;

const struct vk_format_channel_description *channel = &desc->channel[desc->swizzle[c]];
assert(channel->size);

uint64_t v = 0;
if (channel->pure_integer) {
v = value->uint32[c] & ((1ULL << channel->size) - 1);
} else if (channel->normalized) {
if (channel->type == VK_FORMAT_TYPE_UNSIGNED &&
desc->swizzle[c] < 3 &&
desc->colorspace == VK_FORMAT_COLORSPACE_SRGB) {
assert(channel->size == 8);

v = util_format_linear_float_to_srgb_8unorm(value->float32[c]);
} else if (channel->type == VK_FORMAT_TYPE_UNSIGNED) {
v = MAX2(MIN2(value->float32[c], 1.0f), 0.0f) * ((1ULL << channel->size) - 1);
} else {
v = MAX2(MIN2(value->float32[c], 1.0f), -1.0f) * ((1ULL << (channel->size - 1)) - 1);
}
} else if (channel->type == VK_FORMAT_TYPE_FLOAT) {
if (channel->size == 32) {
memcpy(&v, &value->float32[c], 4);
} else if(channel->size == 16) {
v = util_float_to_half(value->float32[c]);
} else {
fprintf(stderr, "failed to fast clear for unhandled float size in format %d\n", format);
return false;
}
} else {
fprintf(stderr, "failed to fast clear for unhandled component type in format %d\n", format);
return false;
clear_vals[0] = value->int32[0];
clear_vals[1] = value->int32[3];
break;
default:
fprintf(stderr, "failed to fast clear %d\n", format);
return false;
}
clear_val |= (v & ((1ULL << channel->size) - 1)) << channel->shift;
}

clear_vals[0] = clear_val;
clear_vals[1] = clear_val >> 32;

return true;
}


Laden…
Annuleren
Opslaan