Browse Source

glsl: Rebalance expression trees that are reduction operations.

The intention of this pass was to give us better instruction scheduling
opportunities, but it unexpectedly reduced some instruction counts as
well:

total instructions in shared programs: 1666639 -> 1666073 (-0.03%)
instructions in affected programs:     54612 -> 54046 (-1.04%)
(and trades 4 SIMD16 programs in SS3)
tags/10.3-branchpoint
Matt Turner 11 years ago
parent
commit
1d9f74eda7

+ 1
- 0
src/glsl/Makefile.sources View File

@@ -96,6 +96,7 @@ LIBGLSL_FILES = \
$(GLSL_SRCDIR)/opt_function_inlining.cpp \
$(GLSL_SRCDIR)/opt_if_simplification.cpp \
$(GLSL_SRCDIR)/opt_noop_swizzle.cpp \
$(GLSL_SRCDIR)/opt_rebalance_tree.cpp \
$(GLSL_SRCDIR)/opt_redundant_jumps.cpp \
$(GLSL_SRCDIR)/opt_structure_splitting.cpp \
$(GLSL_SRCDIR)/opt_swizzle_swizzle.cpp \

+ 1
- 0
src/glsl/glsl_parser_extras.cpp View File

@@ -1569,6 +1569,7 @@ do_common_optimization(exec_list *ir, bool linked,
progress = do_constant_variable_unlinked(ir) || progress;
progress = do_constant_folding(ir) || progress;
progress = do_cse(ir) || progress;
progress = do_rebalance_tree(ir) || progress;
progress = do_algebraic(ir, native_integers) || progress;
progress = do_lower_jumps(ir) || progress;
progress = do_vec_index_to_swizzle(ir) || progress;

+ 1
- 0
src/glsl/ir_optimization.h View File

@@ -71,6 +71,7 @@ bool do_common_optimization(exec_list *ir, bool linked,
const struct gl_shader_compiler_options *options,
bool native_integers);

bool do_rebalance_tree(exec_list *instructions);
bool do_algebraic(exec_list *instructions, bool native_integers);
bool do_constant_folding(exec_list *instructions);
bool do_constant_variable(exec_list *instructions);

+ 300
- 0
src/glsl/opt_rebalance_tree.cpp View File

@@ -0,0 +1,300 @@
/*
* Copyright © 2014 Intel Corporation
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice (including the next
* paragraph) shall be included in all copies or substantial portions of the
* Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
* DEALINGS IN THE SOFTWARE.
*/

/**
* \file opt_rebalance_tree.cpp
*
* Rebalances a reduction expression tree.
*
* For reduction operations (e.g., x + y + z + w) we generate an expression
* tree like
*
* +
* / \
* + w
* / \
* + z
* / \
* x y
*
* which we can rebalance into
*
* +
* / \
* / \
* + +
* / \ / \
* x y z w
*
* to get a better instruction scheduling.
*
* See "Tree Rebalancing in Optimal Editor Time and Space" by Quentin F. Stout
* and Bette L. Warren.
*
* Also see http://penguin.ewu.edu/~trolfe/DSWpaper/ for a very readable
* explanation of the of the tree_to_vine() (rightward rotation) and
* vine_to_tree() (leftward rotation) algorithms.
*/

#include "ir.h"
#include "ir_visitor.h"
#include "ir_rvalue_visitor.h"
#include "ir_optimization.h"

/* The DSW algorithm generates a degenerate tree (really, a linked list) in
* tree_to_vine(). We'd rather not leave a binary expression with only one
* operand, so trivial modifications (the ternary operators below) are needed
* to ensure that we only rotate around the ir_expression nodes of the tree.
*/
static unsigned
tree_to_vine(ir_expression *root)
{
unsigned size = 0;
ir_rvalue *vine_tail = root;
ir_rvalue *remainder = root->operands[1];

while (remainder != NULL) {
ir_expression *remainder_temp = remainder->as_expression();
ir_expression *remainder_left = remainder_temp ?
remainder_temp->operands[0]->as_expression() : NULL;

if (remainder_left == NULL) {
/* move vine_tail down one */
vine_tail = remainder;
remainder = remainder->as_expression() ?
((ir_expression *)remainder)->operands[1] : NULL;
size++;
} else {
/* rotate */
ir_expression *tempptr = remainder_left;
((ir_expression *)remainder)->operands[0] = tempptr->operands[1];
tempptr->operands[1] = remainder;
remainder = tempptr;
((ir_expression *)vine_tail)->operands[1] = tempptr;
}
}

return size;
}

static void
compression(ir_expression *root, unsigned count)
{
ir_expression *scanner = root;

for (unsigned i = 0; i < count; i++) {
ir_expression *child = (ir_expression *)scanner->operands[1];
scanner->operands[1] = child->operands[1];
scanner = (ir_expression *)scanner->operands[1];
child->operands[1] = scanner->operands[0];
scanner->operands[0] = child;
}
}

static void
vine_to_tree(ir_expression *root, unsigned size)
{
int n = size - 1;
for (int m = n / 2; m > 0; m = n / 2) {
compression(root, m);
n -= m + 1;
}
}

namespace {

class ir_rebalance_visitor : public ir_rvalue_enter_visitor {
public:
ir_rebalance_visitor()
{
progress = false;
}

void handle_rvalue(ir_rvalue **rvalue);

bool progress;
};

struct is_reduction_data {
ir_expression_operation operation;
const glsl_type *type;
unsigned num_expr;
bool is_reduction;
bool contains_constant;
};

} /* anonymous namespace */

static bool
is_reduction_operation(ir_expression_operation operation)
{
switch (operation) {
case ir_binop_add:
case ir_binop_mul:
case ir_binop_bit_and:
case ir_binop_bit_xor:
case ir_binop_bit_or:
case ir_binop_logic_and:
case ir_binop_logic_xor:
case ir_binop_logic_or:
case ir_binop_min:
case ir_binop_max:
return true;
default:
return false;
}
}

/* Note that this function does not attempt to recognize that reduction trees
* are already balanced.
*
* We return false from this function for a number of reasons other than an
* expression tree not being a mathematical reduction. Namely,
*
* - if the tree contains multiple constants that we may be able to combine.
* - if the tree contains matrices:
* - they might contain vec4's with many constant components that we can
* simplify after splitting.
* - applying the matrix chain ordering optimization is more than just
* balancing an expression tree.
* - if the tree contains operations on multiple types.
* - if the tree contains ir_dereference_{array,record}, since foo[a+b] + c
* would trick the visiting pass.
*/
static void
is_reduction(ir_instruction *ir, void *data)
{
struct is_reduction_data *ird = (struct is_reduction_data *)data;
if (!ird->is_reduction)
return;

/* We don't want to balance a tree that contains multiple constants, since
* we'll be able to constant fold them if they're not in separate subtrees.
*/
if (ir->as_constant()) {
if (ird->contains_constant) {
ird->is_reduction = false;
}
ird->contains_constant = true;
return;
}

/* Array/record dereferences have subtrees that are not part of the expr
* tree we're balancing. Skip trees containing them.
*/
if (ir->ir_type == ir_type_dereference_array ||
ir->ir_type == ir_type_dereference_record) {
ird->is_reduction = false;
return;
}

ir_expression *expr = ir->as_expression();
if (!expr)
return;

/* Non-constant matrices might still contain constant vec4 that we can
* constant fold once split up. Handling matrices will need some more
* work.
*/
if (expr->type->is_matrix()) {
ird->is_reduction = false;
return;
}

if (ird->type != NULL && ird->type != expr->type) {
ird->is_reduction = false;
return;
}
ird->type = expr->type;

ird->num_expr++;
if (is_reduction_operation(expr->operation)) {
if (ird->operation != 0 && ird->operation != expr->operation)
ird->is_reduction = false;
ird->operation = expr->operation;
} else {
ird->is_reduction = false;
}
}

static ir_rvalue *
handle_expression(ir_expression *expr)
{
struct is_reduction_data ird;
ird.operation = (ir_expression_operation)0;
ird.type = NULL;
ird.num_expr = 0;
ird.is_reduction = true;
ird.contains_constant = false;

visit_tree(expr, is_reduction, (void *)&ird);

if (ird.is_reduction && ird.num_expr > 2) {
ir_constant z = ir_constant(0.0f);
ir_expression pseudo_root = ir_expression(ir_binop_add, &z, expr);

unsigned size = tree_to_vine(&pseudo_root);
vine_to_tree(&pseudo_root, size);

expr = (ir_expression *)pseudo_root.operands[1];
}
return expr;
}

void
ir_rebalance_visitor::handle_rvalue(ir_rvalue **rvalue)
{
if (!*rvalue)
return;

ir_expression *expr = (*rvalue)->as_expression();
if (!expr || !is_reduction_operation(expr->operation))
return;

ir_rvalue *new_rvalue = handle_expression(expr);

/* If we failed to rebalance the tree (e.g., because it wasn't a reduction,
* or some other set of cases) new_rvalue will point to the same root as
* before.
*
* Similarly, if the tree rooted at *rvalue was a reduction and was already
* balanced, the algorithm will rearrange the tree but will ultimately
* return an identical tree, so this check will handle that as well and
* will not set progress = true.
*/
if (new_rvalue == *rvalue)
return;

*rvalue = new_rvalue;
this->progress = true;
}

bool
do_rebalance_tree(exec_list *instructions)
{
ir_rebalance_visitor v;

v.run(instructions);

return v.progress;
}

Loading…
Cancel
Save